【题目】如图,△ABC是等边三角形,点A(-3,0),点B(3,0),点D是y轴上的一个动点,连接BD,将线段BD绕点B逆时针旋转60°,得到线段BE,连接DE,得到△BDE,则OE的最小值为______.
【答案】
【解析】
取BC中点G,连接DG,由“SAS”可证△BGD≌△BOE,可得OE=DG,当DG⊥OC时,DG的值最小,由含30°角的直角三角形的性质即可求出DG的值,即OE最小值.
如图,取BC中点G,连接DG,OE,
∵△ABC是等边三角形,点A(-3,0),点B(3,0),
∴AO=BO=3,∠BCO=30°,∠ABC=60°,
∴BC=AB=6,
∵点G是BC中点,
∴CG=BG=OA=OB=3,
∵将线段BD绕点B逆时针旋转60°,
∴∠DBE=60°,BD=BE,
∴∠ABC=∠DBE,
∴∠CBD=∠ABE,且BE=BD,BG=OB=3,
∴△BGD≌△BOE(SAS),
∴OE=DG,
∴当DG⊥OC时,DG的值最小,即OE的值最小.
∵∠BCO=30°,DG⊥OC
∴DG=CG=,
∴OE的最小值为.
故答案为:
科目:初中数学 来源: 题型:
【题目】正方形ABCD中,F是AB上一点,H是BC延长线上一点,连接FH,将△FBH沿FH翻折,使点B的对应点E落在AD上,EH与CD交于点G,连接BG交FH于点M,当GB平分∠CGE时,BM=,AE=8,则S四边形EFMG=________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于实数,定义两种新运算“※”和“”: ※,(其中为常数,且,若对于平面直角坐标系中的点,有点的坐标※,与之对应,则称点的“衍生点”为点.例如:的“2衍生点”为,即.
(1)点的“3衍生点”的坐标为 ;
(2)若点的“5衍生点” 的坐标为,求点的坐标;
(3)若点的“衍生点”为点,且直线平行于轴,线段的长度为线段长度的3倍,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】模型建立:
(1)如图1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于D,过B作BE⊥ED于E.
求证:△BEC≌△CDA.
模型应用:
(2)已知直线l1:y=x+4与y轴交与A点,将直线l1绕着A点顺时针旋转45°至l2,如图2,求l2的函数解析式.
(3)如图3,矩形ABCO,O为坐标原点,B的坐标为(8,6),A、C分别在坐标轴上,P是线段BC上动点,设PC=m,已知点D在第一象限,且是直线y=2x-6上的一点,若△APD是不以A为直角顶点的等腰Rt△,请直接写出点D的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某台风中心位于O点,台风中心以 的速度向北偏西方向移动,在半径的范围内将受影响,城市A在O点正西方向与O点相距处,试问:
(1)市是否会受此台风影响,并说明理由;
(2)如受影响,则受影响的时间有多长?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图:在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF;
证明:(1)CF=EB.
(2)AB=AF+2EB.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:□ABCD的两边AB,AD的长是关于x的方程x2-mx+-=0的两个实数根.
(1)当m为何值时,四边形ABCD是菱形?求出这时菱形的边长;
(2)若AB的长为2,那么□ABCD的周长是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读材料:
像、、……两个含有二次根式的代数式相乘,积不含有二次根式,我们称这两个代数式互为有理化因式.例如与,与,与等都是互为有理化因式.
在进行二次根式计算时,利用有理化因式,可以化去分母中的根号。
例如:;
解答下列问题:
(1)与 互为有理化因式,将分母有理化得
(2)计算:
(3)观察下面的变形规律并解决问题:
①,,,……若为正整数,请你猜想
②计算:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com