精英家教网 > 初中数学 > 题目详情

【题目】在Rt△ABC中,∠ACB=90°,AC=12.点D在直线CB上,以CA,CD为边作矩形ACDE,直线AB与直线CE,DE的交点分别为F,G,

(1)如图,点D在线段CB上,四边形ACDE是正方形.

①若点G为DE的中点,求FG的长.

②若DG=GF,求BC的长.

(2)已知BC=9,是否存在点D,使得△DFG是等腰三角形?若存在,求该三角形的腰长;若不存在,试说明理由.

【答案】(1)①,②12;(2)等腰的腰长为4或20或.理由见解析.

【解析】

(1)①只要证明ACF∽△GEF,推出,即可解决问题;②如图1中,想办法证明∠1=2=30°即可解决问题;
(2)分四种情形:①如图2中,当点D在线段BC上时,此时只有GF=GD,②如图3中,当点D在线段BC的延长线上,且直线AB,CE的交点中AE上方时,此时只有GF=DG,
③如图4中,当点D在线段BC的延长线上,且直线AB,EC的交点中BD下方时,此时只有DF=DG,如图5中,当点D中线段CB的延长线上时,此时只有DF=DG,分别求解即可解决问题.

(1)①在正方形中,

中,

,

②如图1中,

正方形中,

,设

中,

解得

中,

(2)在中,

如图2中,

当点在线段上时,此时只有

,则

,则

整理得:

解得或5(舍弃)

腰长

如图3中,

当点在线段的延长线上,且直线的交点中上方时,此时只有,设,则

解得(舍弃),

腰长

如图4中,

当点在线段的延长线上,且直线的交点中下方时,此时只有,过点

,则

解得(舍弃)

腰长

如图5中,

当点在线段的延长线上时,此时只有,作

,则

解得(舍弃),

腰长

综上所述,等腰的腰长为4或20或

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为积极响应党和国家精准扶贫战略计划,某公司在农村租用了 720亩闲置土地种植了乔 木型、小乔木型和灌木型三种茶树. 为达到最佳种植收益,要求种植乔木型茶树的面积是小乔木型茶树面积的2倍,灌木型茶树的面积不得超过乔木型茶树面积的倍,但种植乔木型茶树的面积不得超过270. 到茶叶采摘季节时,该公司聘请当地农民进行采摘,每人每天可以采摘0.4亩乔木型茶叶,或者采摘0.5亩小乔木型茶叶,或者采摘0.6亩灌木型茶叶. 若该公司聘请一批农民恰好20天能采摘完所有茶叶,则种植乔木型茶树的面积是________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,四边形ABCD中,ADBC,∠A90°,∠BCD90°AB7AD2BC3,试在边AB上确定点P的位置,使得以PCD为顶点的三角形是直角三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一艘观光游船从港口以北偏东的方向出港观光,航行海里至处时发生了侧翻沉船事故,立即发出了求救信号,一艘在港口正东方向的海警船接到求救信号,测得事故船在它的北偏东方向,马上以海里每小时的速度前往救援,海警船到达事故船处所需的时间大约为________小时(用根号表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知正方形ABCD,点E是边AB的中点,点O是线段AE上的一个动点(不与A、E重合),以O为圆心,OB为半径的圆与边AD相交于点M,过点M作O的切线交DC于点N,连接OM、ON、BM、BN.记MNO、AOM、DMN的面积分别为S1、S2、S3,则下列结论不一定成立的是( )

A.S1>S2+S3 B.AOM∽△DMN C.MBN=45° D.MN=AM+CN

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,,动点从点出发,在边上以每秒2的速度向点匀速运动,同时动点从点出发,在边上以每秒的速度向点匀速运动,设运动时间为(),连接

1)若,求的值;

2)若相似,求的值;

3)当为何值时,四边形的面积最小?并求出最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法正确的是( )

A. 随机抛掷一枚均匀的硬币,落地后反面一定朝上。

B. 12345中随机取一个数,取得奇数的可能性较大。

C. 某彩票中奖率为,说明买100张彩票,有36张中奖。

D. 打开电视,中央一套正在播放新闻联播。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,对称轴为直线x=的抛物线经过B20)、C04)两点,抛物线与x轴的另一交点为A

1)求抛物线的解析式;

2)若点P为第一象限内抛物线上的一点,设四边形COBP的面积为S,求S的最大值;

3)如图2,若M是线段BC上一动点,在x轴是否存在这样的点Q,使△MQC为等腰三角形且△MQB为直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等腰ABC中,底边BC长为8,腰长为6,点DBC边上一点,过点BAC的平行线与过ABD三点的圆交于点E,连接DE,则DE的最小值是___

查看答案和解析>>

同步练习册答案