精英家教网 > 初中数学 > 题目详情
19.已知关于x的方程kx2-(2k+1)x+k=0,根据下列条件,分别求k的取值范围:
(1)有两个不相等的实数根;
(2)有两个相等的实数根;
(3)无实数限;
(4)有实数根.

分析 (1)(2)(3)利用根的判别式进行判断即可;
(4)分k=0和k≠0两种情况进行讨论.

解答 解:(1)方程有两个不相等的实数根;
则△=[-(2k+1)]2-4k2>0,且k≠0,
解得k>-$\frac{1}{4}$且k≠0;
(2)方程有两个相等的实数根;
则△=[-(2k+1)]2-4k2=0,且k≠0,
解得k=-$\frac{1}{4}$;
(3)方程没有实数根;
则△=[-(2k+1)]2-4k2<0,
解得k<-$\frac{1}{4}$;
(4)当k=0时,x=0,
当k≠0时,方程有实数根;
则△=[-(2k+1)]2-4k2≥0,
解得k≥-$\frac{1}{4}$,
综上所述,方程有实数根k≥-$\frac{1}{4}$.

点评 本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

9.解关于x,y的方程组$\left\{\begin{array}{l}{x+y=4k}\\{x-y=5k}\end{array}\right.$,并求当解满足方程4x-3y=21时的k值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.阅读理解:
提出问题:如图1,在四边形ABCD中,P是AD边上任意一点,△PBC与△ABC和△DBC的面积之间有什么关系?探究发现:为了解决这个问题,我们可以先从一些简单的、特殊的情形入手:
当AP=$\frac{1}{2}$AD时(如图2):
∵AP=$\frac{1}{2}$AD,△ABP和△ABD的高相等,
∴S△ABP=$\frac{1}{2}$S△ABD
∵PD=AD-AP=$\frac{1}{2}$AD,△CDP和△CDA的高相等
∴S△CDP=$\frac{1}{2}$S△CDA
∴S△PBC=S四边形ABCD-S△ABP-S△CDP=S四边形ABCD-$\frac{1}{2}$S△ABD-$\frac{1}{2}$S△CDA
=S四边形ABCD-$\frac{1}{2}$ (S四边形ABCD-S△DBC)-$\frac{1}{2}$ (S四边形ABCD-S△ABC)=$\frac{1}{2}$S△DBC+$\frac{1}{2}$S△ABC
(1)当AP=$\frac{1}{3}$AD时,探求S△PBC与S△ABC和S△DBC之间的关系式并证明;
(2)当AP=$\frac{1}{6}$AD时,S△PBC与S△ABC和S△DBC之间的关系式为:S△PBC=$\frac{1}{6}$S△DBC+$\frac{5}{6}$S△ABC
(3)一般地,当AP=$\frac{1}{n}$AD(n表示正整数)时,探求S△PBC与S△ABC和S△DBC之间的关系为:S△PBC=$\frac{1}{n}$S△DBC+$\frac{n-1}{n}$S△ABC
(4)当AP=$\frac{b}{a}$AD(0≤$\frac{b}{a}$≤1)时,S△PBC与S△ABC和S△DBC之间的关系式为:S△PBC=$\frac{b}{a}$S△DBC+$\frac{a-b}{a}$S△ABC

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.若不等式组$\left\{\begin{array}{l}{x-a>2}\\{b-2x>0}\end{array}\right.$的解集是-1<x<1,则(a+b)2014等于1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.解三元一次方程组$\left\{\begin{array}{l}{x+2y+z=7}\\{2x-y+3z=7}\\{3x+y+2z=18}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.若关于x的方程kx2+x+1=0有实根,求k的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,等腰三角形ABC中,AC=BC=10,AB=12.
(1)动手操作:利用尺规作以BC为直径的⊙O,⊙O交AB于点D,⊙O交AC于点E,并且过点D作DF⊥AC交AC于点F.
(2)求证:直线DF是⊙O的切线;
(3)连接DE,记△ADE的面积为S1,四边形DECB的面积为S2,求$\frac{{S}_{1}}{{S}_{2}}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.解方程:$\sqrt{2{x}^{2}-3x+7}$+5=x.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.解不等式组$\left\{\begin{array}{l}{x+3≥6}\\{2x-1≤9}\end{array}\right.$,并写出它的所有整数解.
请结合题意填空,完成本题的解答.
(1)解不等式①,得x≥3.
(2)解不等式②,得x≤5;
(3)把不等式①和②的解集在数轴上表示出来:
(4)原不等式的解集为3≤x≤5.
(5)则不等式组的所有整数解为:3,4,5.

查看答案和解析>>

同步练习册答案