精英家教网 > 初中数学 > 题目详情
如图,矩形ABCD中,AD=,F是DA延长线上一点,G是CF上一点,且∠ACG=∠AGC,∠GAF=∠F=20°,则AB=  
.

试题分析:根据三角形的一个外角等于与它不相邻的两个内角的和可得∠AGC=∠GAF+∠F=40°,再根据等腰三角形的性质求出∠CAG,然后求出∠CAF=120°,再根据∠BAC=∠CAF-∠BAF求出∠BAC=30°,再根据直角三角形30°角所对的直角边等于斜边的一半可得AC=2BC=2AD,然后利用勾股定理列式计算即可得解.
试题解析:由三角形的外角性质得,∠AGC=∠GAF+∠F=20°+20°=40°,
∵∠ACG=∠AGC,
∴∠CAG=180°-∠ACG-∠AGC=180°-2×40°=100°,
∴∠CAF=∠CAG+∠GAF=100°+20°=120°,
∴∠BAC=∠CAF-∠BAF=30°,
在Rt△ABC中,AC=2BC=2AD=2
由勾股定理,AB=
【考点】1.矩形的性质;2.等腰三角形的判定与性质;3.含30度角的直角三角形;4.直角三角形斜边上的中线;5.勾股定理.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在△ABC和△ABD中,AC与BD相交于点E,AD=BC,∠DAB=∠CBA,求证:AC=BD.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AB∥FC,D是AB上一点,DF交AC于点E,DE=FE,分别延长FD和CB交于点G.
(1) 求证:△ADE≌△CFE;
(2) 若GB=2,BC=4,BD=1,求AB的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系xoy中,E(8,0),F(0 , 6).
(1)当G(4,8)时,则∠FGE=                   °
(2)在图中的网格区域内找一点P,使∠FPE=90°且四边形OEPF被过P点的一条直线分割成两部分后,可以拼成一个正方形.
要求:写出点P点坐标,画出过P点的分割线并指出分割线(不必说明理由,不写画法).

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,把一个长方形划分成三个全等的小长方形,若要使每一个小长方形与原长方形相似,则原长方形长和宽之比为(  )
A.3:1B.
3
:1
C.2:1D.
2
:1

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知矩形ABCD中,AB=1,在BC上取一点E,AE将△ABE向上折叠,使B点落在AD上的F点.若四边形EFDC与矩形ABCD相似,则AD=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在△ABC中,∠C=90°,∠B=30°,AD平分∠CAB交BC于点D,E为AB上一点,连接DE,则下列说法错误的是(  )
A.∠CAD=30°B.AD="BD" C.BD="2CD" D.CD=ED

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,则平移的距离和旋转角的度数分别为(  )
A.4,30°B.2,60°C.1,30°D.3,60°

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,AC、BD相交于点O,∠A=∠D,请补充一个条件,使△AOB≌△DOC,你补充的条件是    (填出一个即可).

查看答案和解析>>

同步练习册答案