【题目】如图,直线y=2x﹣4分别交坐标轴于A、B两点,交双曲线y=(x>0)于C点,且sin∠COB=;
(1)求双曲线的解析式;
(2)若过点B的直线y=ax+b(a>0)交y轴于D点,交双曲线于点E,且OD:AD=1:2,求E点横坐标.
【答案】(1)y=;(2)E的横坐标为1+.
【解析】
(1)根据题意设出点C的坐标,由sin∠COB=可以求得点C的坐标,进而可以求得双曲线的解析式;
(2)根据y=2x﹣4求得A、B的坐标,OD:AD=1:2,可知D的坐标,根据待定系数法求得BD的解析式,联立解析式即可求出E横坐标.
解:(1)设点C的坐标是(a,2a﹣4),
∵sin∠COB=,
∴tan∠COB=,
解得,a=6,
∴点C为(6,8),
∵点C在双曲线y=上,
∴k=6×8=48,
即双曲线的解析式为:y=;
(2)∵直线y=ax+b(a>0)交y轴于D点,
∴点D的坐标是(0,b),
∵直线y=2x﹣4分别交坐标轴于A、B两点,
∴点A的坐标是(0,﹣4),B(2,0),
∵OD:AD=1:2,
∴OD=,
∴D(0,),
把B(2,0),D(0,)代入y=ax+b得,
解得,
∴,
解得(舍去),
∴E的横坐标为1+.
科目:初中数学 来源: 题型:
【题目】如图,在矩形OABC中,OA=5,AB=4,点D为边AB上一点,将△BCD沿直线CD折叠,使点B恰好落在OA边上的点E处,分别以OC,OA所在的直线为x轴,y轴建立平面直角坐标系.
(1)求点E坐标及经过O,D,C三点的抛物线的解析式;
(2)一动点P从点C出发,沿CB以每秒2个单位长的速度向点B运动,同时动点Q从E点出发,沿EC以每秒1个单位长的速度向点C运动,当点P到达点B时,两点同时停止运动.设运动时间为t秒,当t为何值时,DP=DQ;
(3)若点N在(2)中的抛物线的对称轴上,点M在抛物线上,是否存在这样的点M与点N,使得以M,N,C,E为顶点的四边形是平行四边形?若存在,请求出M点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,PA是⊙O的切线,切点为A,AC是⊙O的直径,连接OP交⊙O于E.过A点作AB⊥PO于点D,交⊙O于B,连接BC,PB.
(1)求证:PB是⊙O的切线;
(2)求证:E为△PAB的内心;
(3)若cos∠PAB=,BC=1,求PO的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠BCD=90°,且BC=DC,直线PQ经过点D.设∠PDC=α(45°<α<135°),BA⊥PQ于点A,将射线CA绕点C按逆时针方向旋转90°,与直线PQ交于点E.
(1)当α=125°时,∠ABC= °;
(2)求证:AC=CE;
(3)若△ABC的外心在其内部,直接写出α的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利的过程,下面的二次函数图象(部分)刻画了该公司年初以来积累利润S(万元)与销售时间t(月)之间的关系(即前t个月的利润总和S与t之间的关系).
根据图象提供的信息,解答下列问题:
(1)由已知图象上的三点坐标,求累积利润S(万元)与时间t(月)之间的函数关系式;
(2)求第8个月公司所获利润是多少万元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线l与x轴,y轴分别交于A,B两点,且与反比例函数y=(x>0)的图象交于点C,若S△AOB=S△BOC=1,则k=( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线的解析式y=ax2+bx+3与x轴交于A、B两点,点B的坐标为(﹣1,0)抛物线与y轴正半轴交于点C,△ABC面积为6.
(1)如图1,求此抛物线的解析式;
(2)P为第一象限抛物线上一动点,过P作PG⊥AC,垂足为点G,设点P的横坐标为t,线段PG的长为d,求d与t之间的函数关系式,并直接写出自变量t的取值范围;
(3)如图2,在(2)的条件下,过点B作CP的平行线交y轴上一点F,连接AF,在BF的延长线上取点E,连接PE,若PE=AF,∠AFE+∠BEP=180°,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,一次函数y=﹣x+b的图象与反比例函数y=(k≠0)图象交于A、B两点,与y轴交于点C,与x轴交于点D,其中A点坐标为(﹣2,3).
(1)求一次函数和反比例函数解析式.
(2)若将点C沿y轴向下平移4个单位长度至点F,连接AF、BF,求△ABF的面积.
(3)根据图象,直接写出不等式﹣x+b>的解集.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com