精英家教网 > 初中数学 > 题目详情

【题目】如图,建筑物AB的高为52米,在其正前方广场上有人进行航模试飞.从建筑物顶端A处测得航模C的俯角α30°,同一时刻从建筑物的底端B处测得航模C的仰角β45°,求此时航模C的飞行高度.(精确到1)(参考数据:≈1.41≈1.73≈2.45)

【答案】此时航模C的飞行高度为33.

【解析】

CDAB,知∠ACD30°,∠BCD45°,设ADx,可得CDx,由BDCDx,结合AD+BDABx+x52,解之求得x的值,从而得出答案.

解:如图,过点CCDAB于点D

则∠ACD30°,∠BCD45°

ADx

RtACD中,CDx

RtBCD中,由∠BCD45°BDCDx

∴由AD+BDABx+x52

解得:x26(1)2626

BDx7826≈33

答:此时航模C的飞行高度为33.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知A-4,2)、Bn,-4)两点是一次函数y=kx+b和反比例函数图象的两个交点.

1)求一次函数和反比例函数的解析式.

2)求的面积.

3)观察图象,直接写出不等式的解集.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的一元二次方程x24x+12+m0

(1)若方程的一个根是,求m的值及方程的另一根;

(2)若方程的两根恰为等腰三角形的两腰,而这个三角形的底边为m,求m的值及这个等腰三角形的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,在四边形ABCD中,ACBD于点E,AB=AC=BD,点MBC中点,N为线段AM上的点,且MB=MN.

(1)求证:BN平分∠ABE;

(2)若BD=1,连结DN,当四边形DNBC为平行四边形时,求线段BC的长;

(3)如图②,若点FAB的中点,连结FN、FM,求证:MFN∽△BDC.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】RtABC中,∠C=90°,AC=20cm,BC=15cm.现有动点P从点A出发,沿AC向点C方向运动,动点Q从点C出发,沿线段CB也向点B方向运动.如果点P的速度是4cm/秒,点Q的速度是2cm/秒,它们同时出发,当有一点到达所在线段的端点时,就停止运动,设运动的时间为t秒.

(1)用含t的代数式表示RtCPQ的面积S;

(2)t=3秒时,P、Q两点之间的距离是多少?

(3)t为多少秒时,以点C、P、Q为顶点的三角形与△ABC相似?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=﹣+bx+c的图象经过点A(10)和点C(02),点D与点C关于x轴对称,点Px轴上的一个动点,设点P的坐标为(m0),过点Px轴的垂线l交抛物线于点Q,交直线BD于点M.

(1)求该抛物线所表示的二次函数的表达式.

(2)已知点F(0),当点Px轴正半轴上运动时,试求m为何值时,四边形DMQF是平行四边形?

(3)P在线段AB运动过程中,是否存在点Q,使得以点BQM为顶点的三角形与△BOD相似?若存在,求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知ABC的三个顶点坐标分别是A(1,1),B(4,1),C(3,3).

(1)将ABC向下平移5个单位后得到A1B1C1,请画出A1B1C1

(2)将ABC绕原点O逆时针旋转90°后得到A2B2C2,请画出A2B2C2

(3)判断以O,A1,B为顶点的三角形的形状.(无须说明理由)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A、B、C、D都在⊙O上,OC⊥AB,∠ADC=30°.

(1)求∠BOC的度数;

(2)求证:四边形AOBC是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小丽和哥哥小明分别从家和图书馆同时出发,沿同一条路相向而行,小丽开始跑步,遇到哥哥后改为步行,到达图书馆恰好用35分钟,小明匀速骑自行车直接回家,骑行10分钟后遇到了妹妺,再继续骑行5分钟,到家两人距离家的路程ym)与各自离开出发的时间xmin)之间的函数图象如图所示:

1)求两人相遇时小明离家的距离;

2)求小丽离距离图书馆500m时所用的时间.

查看答案和解析>>

同步练习册答案