精英家教网 > 初中数学 > 题目详情

【题目】RtABC中,∠C=90°,AC=20cm,BC=15cm.现有动点P从点A出发,沿AC向点C方向运动,动点Q从点C出发,沿线段CB也向点B方向运动.如果点P的速度是4cm/秒,点Q的速度是2cm/秒,它们同时出发,当有一点到达所在线段的端点时,就停止运动,设运动的时间为t秒.

(1)用含t的代数式表示RtCPQ的面积S;

(2)t=3秒时,P、Q两点之间的距离是多少?

(3)t为多少秒时,以点C、P、Q为顶点的三角形与△ABC相似?

【答案】 秒或秒时,以点为顶点的三角形与相似.

【解析】

1)由点PQ的运动速度和运动时间又知ACBC的长可将CPCQ用含t的表达式求出代入直角三角形面积公式SCPQ=CP×CQ求解

2)在RtCPQt=3可知CPCQ的长运用勾股定理可将PQ的长求出

3)应分两种情况RtCPQRtCAB根据=可求出时间tRtCPQRtCBA根据=可求出时间t

1)由题意得AP=4tCQ=2tCP=204t因此RtCPQ的面积为S=CP×CQ=0t5);

2)由题意得AP=4tCQ=2tCP=204tt=3秒时CP=204t=8cmCQ=2t=6cm

RtCPQ由勾股定理得PQ=

3)由题意得AP=4tCQ=2tCP=204t

分两种情况讨论:

①当RtCPQRtCAB解得t=3

②当RtCPQRtCBA解得t=

因此t=3秒或t=秒时以点CPQ为顶点的三角形与△ABC相似

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】阅读新知:化简后,一般形式为ax4+bx2+c=0(a≠0)的方程,由于其具有只含有未知数偶次项的四次方程,我们称其为双二次方程.这类方程我们一般可以通过换元法求解:求解2x4-5x2+3=0的解

解:设则原方程可化为解之得

综上,原方程的解为.

(1)通过上述阅读,请你求出方程的解;

(2)判断双二次方程ax4+bx2+c=0(a≠0)根的情况下列说法正确的是 选出正确的答案).

①当b2-4ac≥0时,原方程一定有实数根;

②当b2-4ac<0时,原方程一定没有实数根;

③原方程无实数根时,一定有b2-4ac<0.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】正方形的A1B1P1P2顶点P1、P2在反比例函数y= (x>0)的图象上,顶点A1、B1分别在x轴、y轴的正半轴上,再在其右侧作正方形P2P3A2B2,顶点P3在反比例函数y= (x>0)的图象上,顶点A2在x轴的正半轴上,则点P3的坐标为  

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下列材料,并解决问题:任意一个大于1的正整数m都可以表示为:m=p2+q(p、q是正整数,在m的所有这种表示中,如果最小时,规定:F(m)=.例如:21可以表示为:21=12+20=22+17=32+12=42+5,因为>>>,所以F(21)=

(1)F(33)的值;

(2)如果一个正整数n可以表示为t2-t(其中t≥2,且是正整数),那么称n是次完全平方数,证明:任何一个次完全平方数n,都有F(n)=1;

(3)一个三位自然数k,k=100a+10b+c(其中1≤a≤9,0≤b≤9,0≤c≤9,且a≤c,a、b、c为整数),满足十位上的数字恰好等于百位上的数字与个位上的数字之和,且k与其十位上数字的2倍之和能被9整除,求所有满足条件的kF(k)的最小值

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在△ABC中,AB=AC,DEBC,点F在边AC上,DFBE相交于点G,且∠EDF=ABE.

求证:(1)DEF∽△BDE;(2)DGDF=DBEF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明和小亮分别从同一直线跑道AB两端同时相向匀速出发,小明和小亮第一次相遇后,小明觉得自己速度太慢便提速至原速的倍,并匀速运动达到B端,且小明到达B端后停止运动,小亮匀速跑步到达A端后,立即按原速返回B端(忽略调头时间),回到B端后停止运动,已知两人相距的路程S(千米)与小亮出发时间t(秒)之间的关系如图所示,则当小明到达B端后,经过_____秒,小亮回到B端.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=x2+bx+c经过A(﹣1,0)、B(3,0)两点.

(1)求抛物线的解析式和顶点坐标;

(2)P为抛物线上一点,若SPAB=10,求出此时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】石狮泰禾某童装专卖店在销售中发现,一款童装每件进价为80元,销售价为120元时,每天可售出20件,为了迎接“十一”国庆节,商店决定采取适当的降价措施,以扩大销售量,增加利润,经市场调查发现,如果每件童装降价1元,那么平均可多售出2件.

(1)设每件童装降价x元时,每天可销售______ 件,每件盈利______ 元;(用x的代数式表示)

(2)每件童装降价多少元时,平均每天赢利1200元.

(3)要想平均每天赢利2000元,可能吗?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图平行四边形ABCD的顶点Ay轴的正半轴上坐标原点O在边BCAD=6,OAOB的长分别是关于x的一元二次方程x2﹣7x+12=0的两个根.且OAOB

(1)求点CD的坐标

(2)求证射线AO是∠BAC的平分线

查看答案和解析>>

同步练习册答案