【题目】阅读新知:化简后,一般形式为ax4+bx2+c=0(a≠0)的方程,由于其具有只含有未知数偶次项的四次方程,我们称其为“双二次方程”.这类方程我们一般可以通过换元法求解.如:求解2x4-5x2+3=0的解.
解:设,则原方程可化为:,解之得
当时,, ∴;
当时 ∴.
综上,原方程的解为:,.
(1)通过上述阅读,请你求出方程的解;
(2)判断双二次方程ax4+bx2+c=0(a≠0)根的情况,下列说法正确的是 (选出正确的答案).
①当b2-4ac≥0时,原方程一定有实数根;
②当b2-4ac<0时,原方程一定没有实数根;
③原方程无实数根时,一定有b2-4ac<0.
【答案】(1);(2)② .
【解析】
(1)先设t=y2,则原方程变形为3t2+8t﹣3=0,运用因式分解法解得t1=,t2=﹣3,再把t=和﹣3分别代入t=y2得到关于y的一元二次方程,然后解两个一元二次方程,最后确定原方程的解.
(2)根据阅读新知即可判断①②③.
(1)设 y2=t,则原方程可化为:3t2+8t﹣3=0,解得:t1=,t2=﹣3.
当 t1= 时,y2=,此时方程的解为;
当 t2=﹣3时,y2=﹣3,原方程无解;
∴.
综上,原方程的解为:.
(2)根据阅读新知可判断①正确;
如:x4+4x2+3=0,虽然△=b2﹣4ac=16﹣12=4>0,但原方程可化为(x2+1)(x2+3)=0,明显,此方程无解;所以,①③错误.
当b2-4ac<0时,关于x2的方程无实数根,故ax4+bx2+c=0(a≠0)无实数根,故②正确.
故答案为:②.
科目:初中数学 来源: 题型:
【题目】如图,在中,,点分别是的边、的中点,边分别与、相交于点,且,连接、、,现在下列四个结论:
①,②平分,③,④.
则其中正确的结论有( ).
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】王明同学随机抽查某市个小区所得到的绿化率情况,结果如下表:
小区绿化率 | ||||
小区个数 |
则关于这个小区的绿化率情况,下列说法错误的是( )
A. 极差是13% B. 众数是25% C. 中位数是25% D. 平均数是26.2%
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在等边中,点是边上一点.作射线,点关于射线的对称点为点.连接并延长,交射线于点.
(1)如图,连接,
①与的数量关系是__________;
②设,用表示的大小;
(2)如图,用等式表示线段,,之间的数量关系,并证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商店将进价为8元的商品按每件10元售出,每天可售出200件,现在采取提高商品售价减少销售量的办法增加利润,如果这种商品每件的销售价每提高1元,其每天的销售量就减少20件.
(1)当售价定为12元时,每天可售出________件;
(2)要使每天利润达到640元,则每件售价应定为多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等边外有一点,连接,,.
图1 图2 图3
(1)如图1,若,求证:平分;
(2)如图2,若,求证:;
(3)如图3,延长交的延长线于点,以为边向下作等边,若点,,在同一直线上,且,直接写出的度数为___________(结果用含的式子表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点O是平行四边形ABCD的对称中心,将直线DB绕点O顺时针方向旋转,交DC、AB于点E、F.
(1)证明:△DEO≌△BFO;
(2)若DB=2,AD=1,AB=,当DB绕点O顺时针方向旋转45°时,判断四边形AECF的形状,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,CD切⊙O于点D,且BD∥OC,连接AC.
(1)求证:AC是⊙O的切线;
(2)若AB=OC=4,求图中阴影部分的面积(结果保留根号和π)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知线段a,P为线段a上任意一点,已知图形M,Q为图形M上任意一点,当P,Q两点间的距离最小时,将此时PQ的长度称为图形M与线段a的近点距;当P,Q两点间的距离最大时,将此时PQ的长度称为图形M与线段a的远点距.
根据阅读材料解决下列问题:
如图1,在平面直角坐标系xOy中,点A的坐标为(﹣2,﹣2),正方形ABCD的对称中心为原点O.
(1)线段AB与线段CD的近点距是 ,远点距是 .
(2)如图2,直线y=﹣x+6与x轴,y轴分别交于点E,F,则线段EF和正方形ABCD的近点距是 ,远点距是 ;
(3)直线y=x+b(b≠0)与x轴,y轴分别交于点R,S,线段RS与正方形ABCD的近距点是,则b的值是 ;
(4)在平面直角坐标系xOy中,有一个矩形GHMN,若此矩形至少有一个顶点在以O为圆心1为半径的圆上,其余各点可能在圆上或圆内,将正方形ABCD绕点O旋转一周,在旋转过程中,它与矩形GHMN的近点距的最小值是 ,远点距的最大值是 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com