【题目】如图,点O是平行四边形ABCD的对称中心,将直线DB绕点O顺时针方向旋转,交DC、AB于点E、F.
(1)证明:△DEO≌△BFO;
(2)若DB=2,AD=1,AB=,当DB绕点O顺时针方向旋转45°时,判断四边形AECF的形状,并说明理由.
【答案】(1)证明见解析;(2)菱形,证明见解析.
【解析】
(1)由CD∥AB、OD=OB即可证明;
(2)由△DEO≌△BFO得OE=OF,结合OA=OC可判断AECF是平行四边形,再根据题干所给条件可证明∠AOE=90°,则可判定该四边形为菱形.
(1)证明:在平行四边形ABCD中,CD∥AB,
∴∠CDO=∠ABO,∠DEO=∠BFO.
又∵点O是平行四边形的对称中心,
∴OD=OB.
∴△DEO≌△BFO.
(2)解:∵在△ABD中,DB=2,AD=1,AB=,
∴DB2+AD2=AB2.
∴△ABD是直角三角形,且∠ADB=90°
∵OD=OB=DB=1,
∴AD=OD=1.
∴△OAD是等腰直角三角形,
∴∠AOD=45°.
当直线DB绕点O顺时针旋转45°时,即∠DOE=45°,
∴∠AOE=90°
∵△DEO≌△BFO,
∴OE=OF
又∵点O是平行四边形的对称中心,
∴OA=OC
∴四边形AECF是平行四边形
∴四边形AECF是菱形.
科目:初中数学 来源: 题型:
【题目】如图,已知二次函数y=ax2+2x+c图象经过点A (1,4)和点C (0,3).
(1)求该二次函数的解析式;
(2)结合函数图象,直接回答下列问题:
①当﹣1<x<2时,求函数y的取值范围: .
②当y≥3时,求x的取值范围: .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读新知:化简后,一般形式为ax4+bx2+c=0(a≠0)的方程,由于其具有只含有未知数偶次项的四次方程,我们称其为“双二次方程”.这类方程我们一般可以通过换元法求解.如:求解2x4-5x2+3=0的解.
解:设,则原方程可化为:,解之得
当时,, ∴;
当时 ∴.
综上,原方程的解为:,.
(1)通过上述阅读,请你求出方程的解;
(2)判断双二次方程ax4+bx2+c=0(a≠0)根的情况,下列说法正确的是 (选出正确的答案).
①当b2-4ac≥0时,原方程一定有实数根;
②当b2-4ac<0时,原方程一定没有实数根;
③原方程无实数根时,一定有b2-4ac<0.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点,,且,满足,点为上一个动点(不与,)重合),连接.
图1 图2
(1)直接写出 ___________,___________;
(2)如图1,过点作的垂线交过点平行于轴的直线于点,若点,
求点的坐标;
(3)如图2,以为斜边在右侧作等腰,.连接,当点从向运动过程中,的面积是否发生变化,请判断并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中任意一点P(xo,yo),将△ABC平移后得到△A1B1C1,点P的对应点P1(xo+6,yo+4).
(1)写出A1、B1、C1的坐标.
(2)若三角形外有一点M经过同样的平移后得到点N(5,3),写出M点关于原点对称的点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两人加工同一种零件,甲每天加工的数量是乙每天加工数量的 1.5 倍,两人各加工 600 个这种零件,甲比乙少用 5 天.
(1)求甲、乙两人每天各加工多少个这种零件?
(2)已知甲、乙两人加工这种零件每天的加工费分别是 150 元和 120 元,现有 3000 个这种零件的加工任务,甲单独加工一段时间后另有安排,剩余任务由乙单独完成.如果总加工费不超过 7800 元,那么甲至少加工了多少天?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如图的折线图,则符合这一结果的实验最有可能的是( )
A. 在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”
B. 掷一枚质地均匀的正六面体骰子,向上一面的点数是4
C. 一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌,抽中红桃
D. 抛掷一枚均匀的硬币,前2次都正面朝上,第3次正面仍朝上
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,过点C(1,2)分别作x轴、y轴的平行线,交直线y=﹣x+6于A、B两点,若反比例函数(x>0)的图象与△ABC有公共点,则k的取值范围是________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com