精英家教网 > 初中数学 > 题目详情

【题目】如图,过点C(1,2)分别作x轴、y轴的平行线,交直线y=﹣x+6A、B两点,若反比例函数(x0)的图象与△ABC有公共点,则k的取值范围是________

【答案】

【解析】

先求出点A、B的坐标,根据反比例函数系数的几何意义可知,当反比例函数图象与△ABC相交于点Ck的取值最小,当与线段AB相交时,k能取到最大值,根据直线y=-x+6,设交点为(x,-x+6)时k值最大,然后列式利用二次函数的最值问题解答即可得解.

:∵点C(1,2),BC∥y轴,AC∥x轴,
∴当x=1时,y=-1+6=5,
y=2时,-x+6=2,解得x=4,
∴点A、B的坐标分别为A(4,2),B(1,5),
根据反比例函数系数的几何意义,当反比例函数与点C相交时,k=1×2=2最小,
设反比例函数与线段AB相交于点(x,-x+6)时k值最大,
k=x(-x+6)=-x2+6x=-(x-3)2+9,
∵1≤x≤4,
∴当x=3时,k值最大,
此时交点坐标为(3,3),
因此,k的取值范围是2≤k≤9.
故答案为:2≤k≤9.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,点O是平行四边形ABCD的对称中心,将直线DB绕点O顺时针方向旋转,交DC、AB于点E、F.

(1)证明:DEO≌△BFO;

(2)若DB=2,AD=1,AB=,当DB绕点O顺时针方向旋转45°时,判断四边形AECF的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(10分)如图,AB是O的直径,OD弦BC于点F,交O于点E,连结CE、AE、CD,若AEC=ODC

(1)求证:直线CD为O的切线;

(2)若AB=5,BC=4,求线段CD的长

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知线段aP为线段a上任意一点,已知图形MQ为图形M上任意一点,当PQ两点间的距离最小时,将此时PQ的长度称为图形M与线段a的近点距;当PQ两点间的距离最大时,将此时PQ的长度称为图形M与线段a的远点距.

根据阅读材料解决下列问题:

如图1,在平面直角坐标系xOy中,点A的坐标为(﹣2,﹣2),正方形ABCD的对称中心为原点O

1)线段AB与线段CD的近点距是   ,远点距是   

2)如图2,直线y=﹣x+6x轴,y轴分别交于点EF,则线段EF和正方形ABCD的近点距是   ,远点距是   

3)直线yx+bb≠0)与x轴,y轴分别交于点RS,线段RS与正方形ABCD的近距点是,则b的值是   

4)在平面直角坐标系xOy中,有一个矩形GHMN,若此矩形至少有一个顶点在以O为圆心1为半径的圆上,其余各点可能在圆上或圆内,将正方形ABCD绕点O旋转一周,在旋转过程中,它与矩形GHMN的近点距的最小值是  ,远点距的最大值是   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是抛物线形拱桥,当拱顶离水面2m时,水面宽4m,则水面下降1m时,水面宽度增加(  )m.

A. 1 B. 2 C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)如图(1),已知△ABC为正三角形,点MBC上一点,点NAC上一点,AM、BN相交于点Q,BM=CN.求出∠BQM的度数

(2)将(1)中的△ABC”分别改为正方形ABCD、正五边形ABCDE、…正n边形ABCD,“NAC上一点改为点NCD上一点,其余条件不变,分别推断出∠BQM等于多少度,将结论填入下表:

正多边形

正方形

正五边形

……

n边形

∠BQM的度数

……

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,我们不妨把横坐标与纵坐标相等的点称为梦之点,例如,点(1,1),(﹣ 2,﹣ 2),(),…,都是梦之点,显然梦之点有无数个.

(1)若点 P(2,b)是反比例函数 (n 为常数,n ≠ 0) 的图象上的梦之点,求这个反比例函数解析式;

(2)⊙O 的半径是

①求出⊙O上的所有梦之点的坐标;

②已知点 M(m,3),点 Q 是(1)中反比例函数 图象上异于点 P 的梦之点,过点Q 的直线 l y 轴交于点 A,∠OAQ=45°.若在⊙ O 上存在一点 N,使得直线 MN ∥ l MN ⊥ l,求出 m 的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有一个圆柱形玻璃杯高,底面周长为,有一只蚂蚁在一侧距下底的外侧点,与点正对的容器内侧距下底点处有一饭粒,蚂蚁想吃处的饭粒,要从杯子的外侧爬到杯子的内侧,杯子的厚度忽略不计,则至少需要爬________________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有甲、乙两个不透明的布袋,甲袋中有2个完全相同的小球,分别标有数字0和-2;乙袋中有3个完全相同的小球,分别标有数字-201,小明从甲袋中随机取出1个小球,记录标有的数字为x,再从乙袋中随机取出1个小球,记录标有的数字为y,这样确定了点Q的坐标(xy)

1写出点Q所有可能的坐标;

2求点Qx轴上的概率.

查看答案和解析>>

同步练习册答案