【题目】在平面直角坐标系xOy中,已知线段a,P为线段a上任意一点,已知图形M,Q为图形M上任意一点,当P,Q两点间的距离最小时,将此时PQ的长度称为图形M与线段a的近点距;当P,Q两点间的距离最大时,将此时PQ的长度称为图形M与线段a的远点距.
根据阅读材料解决下列问题:
如图1,在平面直角坐标系xOy中,点A的坐标为(﹣2,﹣2),正方形ABCD的对称中心为原点O.
(1)线段AB与线段CD的近点距是 ,远点距是 .
(2)如图2,直线y=﹣x+6与x轴,y轴分别交于点E,F,则线段EF和正方形ABCD的近点距是 ,远点距是 ;
(3)直线y=x+b(b≠0)与x轴,y轴分别交于点R,S,线段RS与正方形ABCD的近距点是,则b的值是 ;
(4)在平面直角坐标系xOy中,有一个矩形GHMN,若此矩形至少有一个顶点在以O为圆心1为半径的圆上,其余各点可能在圆上或圆内,将正方形ABCD绕点O旋转一周,在旋转过程中,它与矩形GHMN的近点距的最小值是 ,远点距的最大值是 .
【答案】(1)4,4;(2),;(3)±8;(4)1,2+1.
【解析】
(1)线段AB与线段CD的近点距是正方形的边长,远点距是正方形的对角线;
(2)如图2中,连接AC,,延长AC交EF于M.解直角三角形求出,,即可解决问题;
(3)如图3中,设直线BD交直线y=x+b于M,N.由题意当DM=BN=2时,线段RS与正方形ABCD的近距点是2,作MP⊥OR于P,由△OPM是等腰直角三角形,OM=4,求出点M的坐标,再利用待定系数法即可解决问题;
(4)如图4中,作正方形ABCD的外接圆与内切圆.利用图象法解决问题即可.
(1)线段AB与线段CD的近点距是正方形的边长=4,
远点距是正方形的对角线=4.
故答案为4,4.
(2)如图2中,连接AC,,延长AC交EF于M.
直线y=﹣x+6与x轴、y轴的交点坐标分别是:E(6,0),F(0,6),
∵四边形ABCD是正方形,且OE=OF=6,
∴OM平分∠EOF,
∴OM⊥EF,,
∴ME=MF,
∴OM=EF=3,
∵OC=OA=2,
∴AM=5,CM=,
∴
∴线段EF和正方形ABCD的近点距是,远点距是.
故答案为:,.
(3)如图3中,设直线BD交直线y=x+b于M,N.
由题意当DM=BN=2时,线段RS与正方形ABCD的近距点是2,
作MP⊥OR于P,
∵△OPM是等腰直角三角形,OM=4,
∴PM=OP=4,
∴M(﹣4,4),同法可得N(4,﹣4),
把M(﹣4,4),代入y=x+b得到b=8,
把N′(4,﹣4),代入y=x+b得到b=﹣8,
故答案为:±8.
(4)如图4中,作正方形ABCD的外接圆与内切圆.
观察图象可知将正方形ABCD绕点O旋转一周,在旋转过程中,它与矩形GHMN的近点距的最小值是:1,远点距的最大值是:,
故答案为:1,.
科目:初中数学 来源: 题型:
【题目】阅读新知:化简后,一般形式为ax4+bx2+c=0(a≠0)的方程,由于其具有只含有未知数偶次项的四次方程,我们称其为“双二次方程”.这类方程我们一般可以通过换元法求解.如:求解2x4-5x2+3=0的解.
解:设,则原方程可化为:,解之得
当时,, ∴;
当时 ∴.
综上,原方程的解为:,.
(1)通过上述阅读,请你求出方程的解;
(2)判断双二次方程ax4+bx2+c=0(a≠0)根的情况,下列说法正确的是 (选出正确的答案).
①当b2-4ac≥0时,原方程一定有实数根;
②当b2-4ac<0时,原方程一定没有实数根;
③原方程无实数根时,一定有b2-4ac<0.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如图的折线图,则符合这一结果的实验最有可能的是( )
A. 在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”
B. 掷一枚质地均匀的正六面体骰子,向上一面的点数是4
C. 一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌,抽中红桃
D. 抛掷一枚均匀的硬币,前2次都正面朝上,第3次正面仍朝上
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已如,在平面直角坐标系中,点的坐标为、点的坐标为,点在轴上,作直线.点关于直线的对称点刚好在轴上,连接.
(1)写出一点的坐标,并求出直线对应的函数表达式;
(2)点在线段上,连接、、,当是等腰直角三角形时,求点坐标;
(3)如图②,在(2)的条件下,点从点出发以每秒2个单位长度的速度向原点运动,到达点时停止运动,连接,过作的垂线,交轴于点,问点运动几秒时是等腰三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,矩形ABCD中,点E是边AD上动点,点F是边BC上动点,连接EF,把矩形ABCD沿直线EF折叠,点B恰好落在边AD上,记为点G;如图2,把矩形展开铺平,连接BE,FG.
(1)判断四边形BEGF的形状一定是 ,请证明你的结论;
(2)若矩形边AB=4,BC=8,直接写出四边形BEGF面积的最大值为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑500米,先到终点的人原地休息.已知甲先出发2秒,在跑步过程中,甲.乙两人的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,给出以下结论:①100秒时乙到达终点;②a=8;③b=92④c=125,其中正确的是( )
A.②③B.①②③C.②③④D.①②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,过点C(1,2)分别作x轴、y轴的平行线,交直线y=﹣x+6于A、B两点,若反比例函数(x>0)的图象与△ABC有公共点,则k的取值范围是________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:如图1,在△ABC和△ADE中,AB=AC=AD=AE,当∠BAC+∠DAE=180° 时,我们称△ABC与△DAE互为“顶补等腰三角形”,△ABC的边BC上的高线AM叫做△ADE的“顶心距”,点A叫做“旋补中心”.
(1)特例感知:在图2,图3中,△ABC与△DAE互为“顶补等腰三角形”,AM是“顶心距”。
①如图2,当∠BAC=90°时,AM与DE之间的数量关系为AM= DE;
②如图3,当∠BAC=120°,ED=6时,AM的长为 。
(2)猜想论证:
在图1中,当∠BAC为任意角时,猜想AM与DE之间的数量关系,并给予证明。
(3)拓展应用
如图4,在四边形ABCD中,AD=AB,CD=BC,∠B=90°,∠A=60°,CA=,在四边ABCD的内部找到点P,使得△PAD与△PBC互为“顶补等腰三角形”。并回答下列问题。
①请在图中标出点P的位置,并描述出该点的位置为 ;
②直接写出△PBC的“顶心距”的长为 。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com