【题目】墙壁处有一盏灯(如图),小明站在处测得他的影长与身长相等都为,小明向墙壁走到处发现影子刚好落在A点,则灯泡与地面的距离________.
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知线段a,P为线段a上任意一点,已知图形M,Q为图形M上任意一点,当P,Q两点间的距离最小时,将此时PQ的长度称为图形M与线段a的近点距;当P,Q两点间的距离最大时,将此时PQ的长度称为图形M与线段a的远点距.
根据阅读材料解决下列问题:
如图1,在平面直角坐标系xOy中,点A的坐标为(﹣2,﹣2),正方形ABCD的对称中心为原点O.
(1)线段AB与线段CD的近点距是 ,远点距是 .
(2)如图2,直线y=﹣x+6与x轴,y轴分别交于点E,F,则线段EF和正方形ABCD的近点距是 ,远点距是 ;
(3)直线y=x+b(b≠0)与x轴,y轴分别交于点R,S,线段RS与正方形ABCD的近距点是,则b的值是 ;
(4)在平面直角坐标系xOy中,有一个矩形GHMN,若此矩形至少有一个顶点在以O为圆心1为半径的圆上,其余各点可能在圆上或圆内,将正方形ABCD绕点O旋转一周,在旋转过程中,它与矩形GHMN的近点距的最小值是 ,远点距的最大值是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有一个圆柱形玻璃杯高,底面周长为,有一只蚂蚁在一侧距下底的外侧点,与点正对的容器内侧距下底的点处有一饭粒,蚂蚁想吃处的饭粒,要从杯子的外侧爬到杯子的内侧,杯子的厚度忽略不计,则至少需要爬________________。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:正方形中,,绕点顺时针旋转,它的两边分别交,(或它们的延长线)于点,。当绕点旋转到时(如图1),易证.(不必证明)
(1)当绕点旋转到时(如图2),线段,和之间有怎样的数量关系?写出猜想,并加以证明。
(2)当绕点旋转到如图3的位置时,线段,和之间又有怎样的数量关系?写出猜想,并加以证明。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,,点,分别为,上一点,,连接,,.
(1)如图1,若,,求的长;
(2)如图2,连接交于点,点为上一点,连接交于点,若,求证:;
(3)在(2)的条件下,若,直接写出线段,,的等量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有甲、乙两个不透明的布袋,甲袋中有2个完全相同的小球,分别标有数字0和-2;乙袋中有3个完全相同的小球,分别标有数字-2,0和1,小明从甲袋中随机取出1个小球,记录标有的数字为x,再从乙袋中随机取出1个小球,记录标有的数字为y,这样确定了点Q的坐标(x,y).
(1)写出点Q所有可能的坐标;
(2)求点Q在x轴上的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图(1),一架云梯AB斜靠在一竖直的墙上,云梯的顶端A距地面15米,梯子的长度比梯子底端B离墙的距离大5米.
(1)这个云梯的底端B离墙多远?
(2)如图(2),如果梯子的顶端下滑了8m(AC的长),那么梯子的底部在水平方向右滑动了多少米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】四边形ABCD中,∠ABC+∠D=180°,AC平分∠BAD,CE⊥AB于E,CF⊥AD于F.
(1)求证:△CBE≌△CDF;
(2)若AB=3,DF=2,求AF的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com