【题目】如图,在中,,平分,交于点,过点作于点.
(1)求证:≌;
(2)若,求的度数.
【答案】(1)见解析(2)120°.
【解析】
(1)由角平分线得出∠ACD=∠ECD,再由∠CED=∠A和公共边,根据AAS证明≌即可;
(2)由线段垂直平分线的性质得出BD=CD,由等腰三角形的性质得出∠B=∠DCE,因此∠ACD+∠DCE+∠B=90°,即可得到∠B的度数,即可求解.
(1)证明:∵平分,
∴∠ACD=∠ECD,
∵,
∴∠DEC=90°,
∴∠DEA=∠C,
在和中,
,
∴≌(AAS).
(2)解:∵,,
∴DE垂直平分BC
∴BD=CD,
∴∠B=∠DCE,
∵∠ACD=∠ECD,
∴∠ACD=∠ECD=∠B,
∵∠ACD+∠ECD+∠B=90°,
∴∠B=30°
∴∠BDE=90°-∠B=60°,
∴∠ADE=180°-∠BDE=120°.
科目:初中数学 来源: 题型:
【题目】已如,在平面直角坐标系中,点的坐标为、点的坐标为,点在轴上,作直线.点关于直线的对称点刚好在轴上,连接.
(1)写出一点的坐标,并求出直线对应的函数表达式;
(2)点在线段上,连接、、,当是等腰直角三角形时,求点坐标;
(3)如图②,在(2)的条件下,点从点出发以每秒2个单位长度的速度向原点运动,到达点时停止运动,连接,过作的垂线,交轴于点,问点运动几秒时是等腰三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:如图1,在△ABC和△ADE中,AB=AC=AD=AE,当∠BAC+∠DAE=180° 时,我们称△ABC与△DAE互为“顶补等腰三角形”,△ABC的边BC上的高线AM叫做△ADE的“顶心距”,点A叫做“旋补中心”.
(1)特例感知:在图2,图3中,△ABC与△DAE互为“顶补等腰三角形”,AM是“顶心距”。
①如图2,当∠BAC=90°时,AM与DE之间的数量关系为AM= DE;
②如图3,当∠BAC=120°,ED=6时,AM的长为 。
(2)猜想论证:
在图1中,当∠BAC为任意角时,猜想AM与DE之间的数量关系,并给予证明。
(3)拓展应用
如图4,在四边形ABCD中,AD=AB,CD=BC,∠B=90°,∠A=60°,CA=,在四边ABCD的内部找到点P,使得△PAD与△PBC互为“顶补等腰三角形”。并回答下列问题。
①请在图中标出点P的位置,并描述出该点的位置为 ;
②直接写出△PBC的“顶心距”的长为 。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】国庆期间,鲁能巴蜀中学团委决定组织同学们观看电影《我和我的祖国》,《中国机长》和《攀登者》,小明准备到电影院提前购票.已知三部电影单价之和为100元,计划购买三部电影票总共不超过135张;其中《攀登者》票价为30元,计划购买35张,《中国机长》至少购买25张,《我和我的祖国》数量不少于《中国机长》的2倍粗心的小明在做预算时将《我和我的祖国》和《中国机长》的票价弄反了,结果实际购买三种电影票时的总价比预算多了112元,若三部电影票的单价均为整数,则小明实际购买这三部电影票最多需要花费_____元.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在平面直角坐标系xOy中,点A的坐标为(4,0),以点A为圆心,4为半径的圆与x轴交于O,B两点,OC为弦,∠AOC=60°,P是x轴上的一动点,连接CP.
(1)直接写出OC=___________;
(2)如图1,当CP与⊙A相切时,求PO的长;
(3)如图2,当点P在直径OB上时,CP的延长线与⊙A相交于点Q,问当PO为何值时,△OCQ是等腰三角形?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】学校对初2021级甲、乙两班各60名学生进行知识测试(满分60分),测试完成后分别抽取了12份成绩,整理分析过程如下,请补充完整.
(收集数据)
甲班12名学生测试成绩统计如下:
45,59,60,38,57,53,52,58,60,50,43,49
乙班12名学生测试成绩统计如下:
35,55,46,39,54,47,43,57,42,59,60,47
(整理数据)
按如下分数段整理,描述这两组样本数据
组别频数 | |||||
甲 | 0 | 1 | 3 | 3 | 5 |
乙 | 2 | 2 | 3 | 1 | 4 |
(分析数据)
两组样本数据的平均数、众数、中位数、方差如下表所示:
班级 | 平均数 | 众数 | 中位数 |
甲 | 52.5 | ||
乙 | 48.7 | 47 |
(1) , ;
(2)若规定得分在40分及以上为合格,请估计乙班60名学生中知识测试合格的学生有多少人?
(3)你认为哪个班的学生知识测试的整体水平较好,请说明一条理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线与轴交于点,与轴交于点,已知点.
(1)求出点,点的坐标.
(2)是直线上一动点,且和的面积相等,求点坐标.
(3)如图2,平移直线,分别交轴,轴于交于点,,过点作平行于轴的直线,在直线上是否存在点,使得是等腰直角三角形?若存在,请直接写出所有符合条件的点的坐标.
图1 图2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为响应市政府“绿色出行”的号召,小张上班由自驾车改为骑公共自行车.已知小张家距上班地点10千米.他骑公共自行车比自驾车平均每小时少行驶45千米,他从家出发到上班地点,骑公共自行车所用的时间是自驾车所用的时间的4倍.小张骑公共自行车平均每小时行驶多少千米?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com