精英家教网 > 初中数学 > 题目详情

【题目】如图是抛物线形拱桥,当拱顶离水面2m时,水面宽4m,则水面下降1m时,水面宽度增加(  )m.

A. 1 B. 2 C. D.

【答案】C

【解析】

根据已知得出直角坐标系,进而求出二次函数解析式,再通过把y=-1代入抛物线解析式得出水面宽度,即可得出答案.

建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,

抛物线以y轴为对称轴,且经过A,B两点,OAOB可求出为AB的一半2米,抛物线顶点C坐标为(0,2),
通过以上条件可设顶点式y=ax2+2,其中a可通过代入A点坐标(-2,0),
到抛物线解析式得出:a=-0.5,所以抛物线解析式为y=-0.5x2+2,
当水面下降1米,通过抛物线在图上的观察可转化为:
y=-1时,对应的抛物线上两点之间的距离,也就是直线y=-1与抛物线相交的两点之间的距离,
可以通过把y=-1代入抛物线解析式得出:
-1=-0.5x2+2,
解得:x=±
所以水面宽度增加到2米,比原先的宽度当然是增加了2-4,
故选C..

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点,且满足,点上一个动点(不与)重合),连接.

1 2

1)直接写出 ______________________

2)如图1,过点的垂线交过点平行于轴的直线于点,若点

求点的坐标;

3)如图2,以为斜边在右侧作等腰.连接,当点运动过程中,的面积是否发生变化,请判断并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A(m,m+1),B(m+1,2m-3)都在反比例函数的图象上.

(1)求m,k的值;

(2)如果M为x轴上一点,N为y轴上一点, 以点A,B,M,N为顶点的四边形是平行四边形,试求直线MN的函数表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,矩形ABCD中,点E是边AD上动点,点F是边BC上动点,连接EF,把矩形ABCD沿直线EF折叠,点B恰好落在边AD上,记为点G;如图2,把矩形展开铺平,连接BEFG.

1)判断四边形BEGF的形状一定是   ,请证明你的结论;

2)若矩形边AB4BC8,直接写出四边形BEGF面积的最大值为   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某公司欲将件产品全部运往甲,乙,丙三地销售(每地均有产品销售),运费分别为40/件,24/件,7/件,且要求运往乙地的件数是运往甲地件数的3倍,设安排为正整数)件产品运往甲地.

1)根据信息填表:

甲地

乙地

丙地

产品件数(件)

运费(元)

2)若总运费为6300元,求的函数关系式并求出的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,过点C(1,2)分别作x轴、y轴的平行线,交直线y=﹣x+6A、B两点,若反比例函数(x0)的图象与△ABC有公共点,则k的取值范围是________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为O的直径,C是O上一点,过点C的直线交AB的延长线于点D,AEDC,垂足为E,F是AE与O的交点,AC平分BAE.

1求证:DE是O的切线;

2若AE=6,D=30°,求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】平行四边形在平面直角坐标系中的位置如图所示,,AC=4,把平行四边形绕点逆时针方向旋转,使点落在轴上,则旋转后点的对应点的坐标为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】a+b=2,则称a与b是关于1的平衡数.

(1)3与   是关于1的平衡数,5﹣    是关于1的平衡数;

(2)若(m+)×(1﹣)=﹣5+3,判断m+与5﹣是否是关于1的平衡数,并说明理由.

查看答案和解析>>

同步练习册答案