【题目】平行四边形在平面直角坐标系中的位置如图所示,,,AC=4,把平行四边形绕点逆时针方向旋转,使点落在轴上,则旋转后点的对应点的坐标为________.
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,过B作一直线与CD相交于点E,过A作AF垂直BE于点F,过C作CG垂直BE于点G,在FA上截取FH=FB,再过H作HP垂直AF交AB于P.若CG=3.则△CGE与四边形BFHP的面积之和为 _________ .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,我们不妨把横坐标与纵坐标相等的点称为梦之点,例如,点(1,1),(﹣ 2,﹣ 2),(,),…,都是梦之点,显然梦之点有无数个.
(1)若点 P(2,b)是反比例函数 (n 为常数,n ≠ 0) 的图象上的梦之点,求这个反比例函数解析式;
(2)⊙O 的半径是 ,
①求出⊙O上的所有梦之点的坐标;
②已知点 M(m,3),点 Q 是(1)中反比例函数 图象上异于点 P 的梦之点,过点Q 的直线 l 与 y 轴交于点 A,∠OAQ=45°.若在⊙ O 上存在一点 N,使得直线 MN ∥ l或 MN ⊥ l,求出 m 的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下表是三种电话计费方式:
月使用费 (元) | 主叫限定时间 (分钟) | 主叫超时收费 (元/分钟) | 被叫 | |
方式一 | 18 | 60 | 0.2 | 免费 |
方式二 | 28 | 120 | 0.2 | 免费 |
方式三 | 48 | 240 | 0.2 | 免费 |
说明:月使用费固定收取,主叫不超限定时间不再收费,主叫超时部分加收超时费.
设一个月内主叫通话分钟(为正整数).
(1)当时,按方式一计费为______元;按方式二计费为______元.
(2)当时,是否存在某一时间,使方式二与方式三的计费结果相等?若存在,请求出对应的值,若不存在,请说明理由.
(3)当时,哪一种收费方式最省钱?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有一个圆柱形玻璃杯高,底面周长为,有一只蚂蚁在一侧距下底的外侧点,与点正对的容器内侧距下底的点处有一饭粒,蚂蚁想吃处的饭粒,要从杯子的外侧爬到杯子的内侧,杯子的厚度忽略不计,则至少需要爬________________。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】今年10月某服装店老板用15000元购得“衬衣”和“T恤”共200件,其中“衬衣”和“T恤”的数量比为3:2,已知每件“衬衣”的售价比每件“T恤”的售价的2倍少20元,预计10月可全部售完.
(1)该批发商想通过本次销售共获利1800元,则每件“衬衣”卖多少元?
(2)实际销售时,受中央“厉行节约”号召的影响,在(1)中销售价的基础之上,“衬衣”的销售量不变,售价下降了a%,“T恤”的销售量下降了2a%,但售价不变,结果“衬衣”比“T恤”的销售额至少多了6480元,求a的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:正方形中,,绕点顺时针旋转,它的两边分别交,(或它们的延长线)于点,。当绕点旋转到时(如图1),易证.(不必证明)
(1)当绕点旋转到时(如图2),线段,和之间有怎样的数量关系?写出猜想,并加以证明。
(2)当绕点旋转到如图3的位置时,线段,和之间又有怎样的数量关系?写出猜想,并加以证明。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,已知直线y=-2x+4与x轴、y轴分别交于点A、C,以OA、OC为边在第一象限内作长方形OABC.
(1)求点A、C的坐标;
(2)将△ABC对折,使得点A的与点C重合,折痕交AB于点D,求直线CD的解析式(图②);
(3)在坐标平面内,是否存在点P(除点B外),使得△APC与△ABC全等?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com