精英家教网 > 初中数学 > 题目详情

【题目】如图,AB是⊙O的直径,CD切⊙O于点D,且BDOC,连接AC.

(1)求证:AC是⊙O的切线;

(2)若AB=OC=4,求图中阴影部分的面积(结果保留根号和π)

【答案】(1)证明见解析;(2)

【解析】

(1)连接OD,先根据切线的性质得到∠CDO=90°,再根据平行线的性质得到∠AOC=∠OBD,∠COD=∠ODB,又因为OB=OD,所以∠OBD=∠ODB,∠AOC=∠COD,再根据全等三角形的判定与性质得到∠CAO=∠CDO=90°,根据切线的判定即可得证;

(2)因为AB=OC=4,OB=OD,Rt△ODCRt△OAC是含30°的直角三角形,从而得到

∠DOB=60°,△BOD为等边三角形,再用扇形的面积减去△BOD的面积即可.

(1)证明:连接OD,

∵CD与圆O相切,

∴OD⊥CD,

∴∠CDO=90°,

∵BD∥OC,

∴∠AOC=∠OBD,∠COD=∠ODB,

∵OB=OD,

∴∠OBD=∠ODB,

∴∠AOC=∠COD,

△AOC△DOC中,

∴△AOC≌△EOC(SAS),

∴∠CAO=∠CDO=90°,则AC与圆O相切;

(2)∵AB=OC=4,OB=OD,

∴Rt△ODCRt△OAC是含30°的直角三角形,

∴∠DOC=∠COA=60°,

∴∠DOB=60°,

∴△BOD为等边三角形,

图中阴影部分的面积=扇形DOB的面积﹣△DOB的面积,

=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】对于代数式,不同的表达形式能表现出它的不同性质.例如代数式,若将其写成的形式,就能看出不论字母x取何值,它都表示正数;若将它写成的形式,就能与代数式B=建立联系.下面我们改变x的值,研究一下AB两个代数式取值的规律:

x

-2

-1

0

1

2

3

10

5

2

1

5

17

10

5

1)完成上表;

2)观察表格可以发现:

x=m时,,则x=m+1时,.我们把这种现象称为代数式A参照代数式B取值延后,此时延后值为1

若代数式D参照代数式B取值延后,相应的延后值为2,求代数式D

已知代数式参照代数式取值延后,请直接写出b-c的值:________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读新知:化简后,一般形式为ax4+bx2+c=0(a≠0)的方程,由于其具有只含有未知数偶次项的四次方程,我们称其为双二次方程.这类方程我们一般可以通过换元法求解:求解2x4-5x2+3=0的解

解:设则原方程可化为解之得

综上,原方程的解为.

(1)通过上述阅读,请你求出方程的解;

(2)判断双二次方程ax4+bx2+c=0(a≠0)根的情况下列说法正确的是 选出正确的答案).

①当b2-4ac≥0时,原方程一定有实数根;

②当b2-4ac<0时,原方程一定没有实数根;

③原方程无实数根时,一定有b2-4ac<0.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC中任意一点P(xo,yo),将ABC平移后得到A1B1C1,点P的对应点P1(xo+6,yo+4).

(1)写出A1、B1、C1的坐标.

(2)若三角形外有一点M经过同样的平移后得到点N(5,3),写出M点关于原点对称的点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两人加工同一种零件,甲每天加工的数量是乙每天加工数量的 1.5 倍,两人各加工 600 个这种零件,甲比乙少用 5 天.

1)求甲、乙两人每天各加工多少个这种零件?

2)已知甲、乙两人加工这种零件每天的加工费分别是 150 元和 120 元,现有 3000 个这种零件的加工任务,甲单独加工一段时间后另有安排,剩余任务由乙单独完成.如果总加工费不超过 7800 元,那么甲至少加工了多少天?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图(1),P为ABC所在平面上一点,且APB=BPC=CPA=120°,则点P叫做ABC的费马点.

(1)如果点P为锐角ABC的费马点,且ABC=60°.

①求证:ABP∽△BCP;

②若PA=3,PC=4,则PB=

(2)已知锐角ABC,分别以AB、AC为边向外作正ABE和正ACD,CE和BD 相交于P点.如图(2)

①求CPD的度数;

②求证:P点为ABC的费马点.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某小组做用频率估计概率的实验时,统计了某一结果出现的频率,绘制了如图的折线图,则符合这一结果的实验最有可能的是(  )

A. 石头、剪刀、布的游戏中,小明随机出的是剪刀

B. 掷一枚质地均匀的正六面体骰子,向上一面的点数是4

C. 一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌,抽中红桃

D. 抛掷一枚均匀的硬币,前2次都正面朝上,第3次正面仍朝上

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已如,在平面直角坐标系中,点的坐标为、点的坐标为,点轴上,作直线.关于直线的对称点刚好在轴上,连接.

1)写出一点的坐标,并求出直线对应的函数表达式;

2)点在线段上,连接,当是等腰直角三角形时,求点坐标;

3)如图②,在(2)的条件下,点从点出发以每秒2个单位长度的速度向原点运动,到达点时停止运动,连接,过的垂线,交轴于点,问点运动几秒时是等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:如图1,在△ABC和△ADE中,AB=AC=AD=AE,当∠BAC+∠DAE=180° 时,我们称△ABC与△DAE互为“顶补等腰三角形”,△ABC的边BC上的高线AM叫做△ADE的“顶心距”,点A叫做“旋补中心”.

(1)特例感知:在图2,图3中,△ABC与△DAE互为“顶补等腰三角形”,AM是“顶心距”

①如图2,当∠BAC=90°时,AM与DE之间的数量关系为AM=   DE;

②如图3,当∠BAC=120°,ED=6时,AM的长为   

(2)猜想论证:

在图1中,当∠BAC为任意角时,猜想AM与DE之间的数量关系,并给予证明

(3)拓展应用

如图4,在四边形ABCD中,AD=AB,CD=BC,∠B=90°,∠A=60°,CA=,在四边ABCD的内部找到点P,使得△PAD与△PBC互为“顶补等腰三角形”并回答下列问题

①请在图中标出点P的位置,并描述出该点的位置为

②直接写出△PBC的“顶心距”的长为

查看答案和解析>>

同步练习册答案