精英家教网 > 初中数学 > 题目详情
1.已知抛物线y=-x2+bx+3交x轴负、正半轴于A、B两点,交y轴与点C,且tan∠ACO=$\frac{1}{3}$,△ABC的外接圆的圆心为M.
(1)求该二次函数的解析式;
(2)在x轴上方的抛物线上是否存在一点P,使S△BCP=3,若存在请求出点P坐标,若不存在,说明理由;
(3)圆上是否存在Q点,使△AOC与△BQC相似?若存在,直接写出点Q坐标;若不存在,说明理由.

分析 (1)利用待定系数法直接求出抛物线解析式;
(2)分两种情况用三角形BCP的面积建立方程,解方程即可得出点P的坐标;
(3)先判断出三角形BCQ是直角三角形,进而得出Q是⊙M的直径的一个端点,再分两种情况求出直线交点坐标,进而判定是否相似即可.

解答 解:(1)由tan∠ACO=$\frac{1}{3}$,OC=3,OA=1,
∴A(-1,0)代入解析式得b=2,
∴y=-x2+2x+3;
(2)存在;直线BC的解析式为y=-x+3,
设P(x,-x2+2x+3).
①若P在BC上方的抛物线上,
如图1,

过P作PH⊥x轴交BC于G,
则:S△BCP=$\frac{1}{2}$PG×OB=$\frac{1}{2}$[-x2+2x+3-(-x+3)]×3=-$\frac{3}{2}$x2+$\frac{9}{2}$x,
∵S△BCP=3,
∴-$\frac{3}{2}$x2+$\frac{9}{2}$x=3,
∴x1=1,x2=2,
∴P1(1,4),P2(2,3);
②若P在BC下方的抛物线上,
如图2,

过P作PL⊥x轴于L,
则:S△BCP=S△BOC+S梯形PLOC-S△PLB=$\frac{1}{2}$[OC×OB+(PL+OC)×OL-BL×PL]=$\frac{1}{2}$[3×3+(-x2+2x+3+3)×(-x)-(3-x)×(-x2+2x+3)]=$\frac{1}{2}$(3x2-9x)=3,
∴x=$\frac{3+\sqrt{17}}{2}$(舍)或x=$\frac{3-\sqrt{17}}{2}$,
此时P3($\frac{3-\sqrt{17}}{2}$,$\frac{1+\sqrt{17}}{2}$).
综上P1(1,4),P2(2,3),P3($\frac{3-\sqrt{17}}{2}$,$\frac{1+\sqrt{17}}{2}$).
(3)存在;如图3,

∵抛物线y=-x2+2x+3,
∴B(3,0),
∵C(0,3),
∴BC=3$\sqrt{2}$,直线BC的解析式为y=-x+3,
∴直线BC的垂直平分线的解析式为y=x,
∵AB的垂直平分线是抛物线的对称轴x=1,
∴M(1,1),
∵△AOC是直角三角形,△AOC与△BQC相似,
∴△BQC是直角三角形,
∵BC不是直径,
∴点Q是⊙M的直径的一个端点,
①当∠BCQ是直角,则BQ是直径,
∴CQ⊥BC,
∵C(0,3),
∴直线CQ的解析式为y=x+3①,
∵M(1,1),B(3,0),
∴直线BQ的解析式为y=-$\frac{1}{2}$x+$\frac{3}{2}$②,
联立①②得,x=-1.y=2,
∴Q(-1,2),
∴CQ=$\sqrt{2}$,
∵BC=3$\sqrt{2}$,
∴$\frac{CQ}{BC}=\frac{1}{3}$,
∵tan∠ACO=$\frac{OA}{OC}$=$\frac{1}{3}$,
∴$\frac{OA}{OC}=\frac{CQ}{BC}$,
∵∠AOC=∠QCB=90°,
∴△AOC∽△QCB,
②当∠BQ'C=90°时,同①的方法即可得出Q'(2,-1)
即:满足条件的Q(2,-1),Q'(-1,2).

点评 此题是二次函数综合题,主要考查了待定系数法,三角形的面积公式,直线的交点坐标的求法,相似三角形的性质和判定,解本题的关键是求出直线解析式,是一道中等难度的中考常考题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

11.如图,四边形ABCD、BEFG均为正方形.
(1)如图1,连接AG、CE,试判断AG和CE的关系并证明.
(2)将正方形BEFG绕点B顺时针旋转β角,(0<β<180),如图2,连接AG,CE相交于点M,连接BM,当角β发生变化时,∠EMB的度数是否发生变化,若不变化,求出∠EMB的度数;若发生变化,请说明理由.
(3)在(2)的条件下,过点A作AN⊥MB交MB的延长线于点N,请直接写出线段CM和BN的数量关系CM=$\sqrt{2}$BN.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,当四边形ABCD的内部有一个点P1时,最多可以把四边形ABCD剪成4个三角形,当四边形ABCD内部有两个点P1,P2时,最多可以把四边形剪6个三角形;
(1)当四边形ABCD的内部有3个点P1、P2、P3时,最多可把它剪成8个三角形;
(2)当四边形ABCD的内部有10个点P1…P10时,最多可把它剪成22个三角形;
当四边形ABCD内部有n个点P1…Pn时,最多可以把它剪成2(n+1)个三角形;
(3)最多可以把四边形ABCD剪成2016个三角形吗?若能,求出四边形ABCD内部有多少个点?若不能,请说明理由;
(4)若设四边形ABCD的内部分别有1个点时,最多可以把四边形ABCD剪成S1个三角形;有2个点时,最多可以把四边形ABCD剪成S2个三角形;…有100个点时,最多可以把四边形ABCD剪成S100个三角形;求S1+S2+…+S100的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图1,在平面直角坐标系中,直线AB与x轴,y轴分别交于点A(2,0),B(0,4).
(1)求直线AB的解析式;
(2)若点M为直线y=mx在第一象限上一点,且△ABM是等腰直角三角形,求m的值.
(3)如图3,过点A(2,0)的直线y=kx-2k交y轴负半轴于点P,N点的横坐标为-1,过N点的直线y=$\frac{k}{2}$x-$\frac{k}{2}$交AP于点M.求$\frac{PM-PN}{AM}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.如图,在△ABC中,∠C=90°,∠ABC=60°,若CD=2,AB=6,则S△ABD=$\frac{9\sqrt{3}}{2}$-3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.综合与实践
问题情境
    在综合实践课上,老师让同学们“以三角形的旋转”为主题进行数学活动,如图(1),在三角形纸片ABC中,AB=AC,∠B=∠C=α.
操作发现
(1)创新小组将图(1)中的△ABC以点B为旋转中心,逆时针旋转角度α,得到△DBE,再将△ABC以点A为旋转中心,顺时针旋转角度α,得到△AFG,连接DF,得到图(2),则四边形AFDE的形状是平行四边形.
(2)实践小组将图(1)中的△ABC以点B为旋转中心,逆时针逆转90°,得到△DBE,再将△ABC以点A为旋转中心,顺时针旋转90°,得到△AFG,连接DF、DG、AE,得到图(3),发现四边形AFDB为正方形,请你证明这个结论.
拓展探索
(3)请你在实践小组操作的基础上,再写出图(3)中的一个特殊四边形,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.如图,三角形纸片ABC中,∠BCA=90°,在AC上取一点E,以BE为折痕进行翻折,使AB的一部分与BC重合,A与BC延长线上的点D重合,若∠A=30°,AC=6,则,DE的长度为(  )
A.6B.4C.3D.2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图1,已知正方形ABCD边长为1,点P是AD边上的一个动点,点A关于直线BP的对称点是点Q,连结PQ、DQ、CQ、BQ.设AP=x.

(1)BQ+DQ的最小值是$\sqrt{2}$,此时x的值是$\sqrt{2}$-1;
(2)如图2,若PQ的延长线交CD边于E,并且∠CQD=90°.
①求证:QE﹦EC;    
②求x的值.
(3)若点P是射线AD上的一个动点,请直接写出当△CDQ为等腰三角形时x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.分解因式:4x2-12xy+9y2=(2x-3y)2

查看答案和解析>>

同步练习册答案