精英家教网 > 初中数学 > 题目详情
13.如图,三角形纸片ABC中,∠BCA=90°,在AC上取一点E,以BE为折痕进行翻折,使AB的一部分与BC重合,A与BC延长线上的点D重合,若∠A=30°,AC=6,则,DE的长度为(  )
A.6B.4C.3D.2

分析 先用含30°的直角三角形性质得出BC,进而求出CE,即可求出AE,由折叠的性质即可得出结论.

解答 解:在Rt△ABC中,∠A=30°,
∴BC=2$\sqrt{3}$,∠ABC=60°
由折叠知,DE=AE,∠DBE=∠ABE=$\frac{1}{2}$∠ABC=30°=∠A,
在Rt△BCE中,BC=2$\sqrt{3}$,∠DBE=30°,
∴CE=2,
∴AE=AC-CE=4,
∴DE=4,
故选B.

点评 此题是折叠问题,主要考查了折叠的性质,含30°的直角三角形的性质,用30°的直角三角形的性质是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

3.如图,以长方形OABC的顶点O为原点,OA所在直线为x轴,OC所在直线为y轴,建立平面直角坐标系.已知OA=3,OC=2,点E是AB的中点,在OA上取一点D,连结BD,点A关于BD的对称点恰好落在线段BC边上的点F处.
(1)直接写出点E,F的坐标;
(2)在线段CB上是否存在一点P,使△OEP为等腰三角形?若存在,求出所有满足条件的P点坐标;若不存在,请说明理由.
(3)在x轴、y轴上是否分别存在点M、N,使四边形MNFE的周长最小?如果存在,求出周长的最小值;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.E为正方形ABCD的边CD上一点,将△ADE绕A点顺时针旋转90°,得△ABF,G为EF中点.下列结论:①G在△ABF的外接圆上;②EC=$\sqrt{2}$BG;③B,G,D三点在同一条直线上;④若S四边形BGEC=$\frac{1}{4}$S正方形ABCD,那么E为DC的黄金分割点.正确的是(  )
A.①②B.①②③C.①③④D.①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.已知抛物线y=-x2+bx+3交x轴负、正半轴于A、B两点,交y轴与点C,且tan∠ACO=$\frac{1}{3}$,△ABC的外接圆的圆心为M.
(1)求该二次函数的解析式;
(2)在x轴上方的抛物线上是否存在一点P,使S△BCP=3,若存在请求出点P坐标,若不存在,说明理由;
(3)圆上是否存在Q点,使△AOC与△BQC相似?若存在,直接写出点Q坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,在平面直角坐标系内,点O为坐标原点,抛物线y=ax2+bx+2交x正半轴 于点A,交x轴负半轴于点B,交y轴于点C,OB=OC,连接AC,tan∠OCA=2.
(1)求抛物线的解析式;
(2)点P是第三象限抛物线y=ax2+bx+2上的一个动点,过点P作y轴的平行线交直线AC于点D,设PD的长为d,点P的横坐标为t,求d与t之间的函数关系式(不要求写出自变量t的取值范围);
(3)在(2)的条件下,连接PA,PC,当△ACP的面积为30时,将△APC沿AP折叠得△APC′,点C′为点C的对应点,求点C′坐标并判断点C′是否在抛物线y=ax2+bx+2上,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,四边形ABCD中,AD=CD,AB=CB.我们把这种两组邻边分别相等的凸四边形叫做筝形.AC,BD叫作筝形的对角线.请你通过观察、测量、折纸等方法进行探究,并回答以下问题:
(1)判断下列结论是否正确;
a.∠DAB=∠DCB;√
b.∠ABC=∠ADC;× 
c.BD分别平分∠ABC和∠ADC√
d.筝形是轴对称图形,它有两条对称轴.×
(2)请你选择下列问题中的一个进行证明:
a.从(1)中选择一个正确的结论进行证明;
b.通过探究,再找到一条筝形的性质,并进行证明.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,直角坐标系中,O为原点,A(6,0),在等腰三角形ABO中,OB=BA=5,点B在第一象限,C(0,k)为y轴正半轴上一动点,作以∠CBD为顶角的等腰三角形CBD,且∠CBD=∠OBA,连结AD.
(1)①求点B的坐标;②若BD∥OC,求k的值.
(2)求证:OC=AD;
(3)设直线AD与y轴交于点M(0,m),当点C在y轴上运动时,点M的位置是否改变?若改变,求m与k的函数关系式,若不变,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.在平面直角坐标系xOy中,⊙C的半径为r(r>1),P是圆内与圆心C不重合的点,⊙C的“完美点”的定义如下:若直线CP与⊙C交于点A,B,满足|PA-PB|=2,则称点P为⊙C的“完美点”,如图为⊙C及其“完美点”P的示意图.
(1)当⊙O的半径为2时,
①在点M($\frac{3}{2}$,0),N(0,1),T(-$\frac{\sqrt{3}}{2}$,-$\frac{1}{2}$)中,⊙O的“完美点”是N,T;
②若⊙O的“完美点”P在直线y=$\sqrt{3}$x上,求PO的长及点P的坐标;
(2)⊙C的圆心在直线y=$\sqrt{3}$x+1上,半径为2,若y轴上存在⊙C的“完美点”,求圆心C的纵坐标t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.将二次函数y=$\frac{1}{4}$x2+x-1化为y=a(x+h)2+k的形式是(  )
A.y=$\frac{1}{4}(x+2)^{2}+2$B.y=$\frac{1}{4}$(x-2)2-2C.y=$\frac{1}{4}$(x+2)2-2D.y=$\frac{1}{4}$(x-2)2+2

查看答案和解析>>

同步练习册答案