【题目】如图,在等边三角形ABC中,点D,E分别在边BC,AC上,DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.
(1)求∠F的度数;
(2)若CD=2,求DF的长.
【答案】(1)、30°;(2)、4.
【解析】
试题分析:(1)、根据等边三角形的性质得出∠B=60°,根据DE∥AB得出∠EDC=60°,根据垂直得出∠DEF=90°,根据三角形内角和定理可得∠F的度数;(2)、根据∠ACB=∠EDC=60°得出△EDC为等边三角形,则ED=DC=2,根据∠DEF=90°,∠F=30°得出DF=2DE=4.
试题解析:(1)、∵△ABC是等边三角形, ∴∠B=60°, ∵DE∥AB, ∴∠EDC=∠B=60°
∵EF⊥DE, ∴∠DEF=90°, ∴∠F=90°﹣∠EDC=30°
(2)、∵∠ACB=60°,∠EDC=60°, ∴△EDC是等边三角形.∴ED=DC=2,
∵∠DEF=90°,∠F=30° ∴DF=2DE=4.
科目:初中数学 来源: 题型:
【题目】以下四个例子中,不能作为反例说明“一个角的余角大于这个角”是假命题是 ( )
A. 设这个角是30,它的余角是60°,但30°<60°
B. 设这个角是45°,它的余角是45°,但45°=45°
C. 设这个角是60°,它的余角是30°,但30°<60°
D. 设这个角是50°,它的余角是40°,但40°<50°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,方格纸中每个小正方形的边长都是1个单位长度,Rt△ABC的三个顶点A(﹣2,2),B(0,5),C(0,2).
(1)将△ABC以点C为旋转中心旋转180°,得到△A1B1C,请画出△A1B1C的图形.
(2)平移△ABC,使点A的对应点A2坐标为(﹣2,﹣6),请画出平移后对应的△A2B2C2的图形.
(3)若将△A1B1C绕某一点旋转可得到△A2B2C2,请直接写出旋转中心的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:如图①,在△ABC中,CD是AB边上的中线,那么△ACD和△BCD是“友好三角形”,并且S△ACD=S△BCD.应用:如图②,在矩形ABCD中,AB=4,BC=6,点E在AD上,点F在BC上,AE=BF,AF与BE交于点O.
(1)求证:△AOB和△AOE是“友好三角形”;
(2)连接OD,若△AOE和△DOE是“友好三角形”,求四边形CDOF的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com