【题目】如图,点D是⊙O上一点,直线AE经过点D,直线AB经过圆心O,交⊙O于B,C两点,CE⊥AE,垂足为点E,交⊙O于点F,∠BCD=∠DCF
(1)求∠A+∠BOD的度数;
(2)若sin∠DCE=,⊙O的半径为5,求线段AB的长.
【答案】(1)详见解析;(2).
【解析】
(1)由OC=OD,得出∠OCD=∠ODC,而∠BCD=∠DCF,等量代换得到∠ODC=∠DCF,那么OD∥CE,由CE⊥AD,得出OD⊥AD,所以∠A+∠BOD=90°;
(2)连接BD.由圆周角定理得出∠BDC=90°,解直角△BCD,求出BD=6,CD==8.再解Rt△DCE,求出DE=,EC=.再由DO∥EC,得出,即,即可求出AB=.
(1)∵OC=OD,
∴∠OCD=∠ODC,
∵∠BCD=∠DCF,
∴∠ODC=∠DCF,
∴OD∥CE,
∵CE⊥AD,
∴OD⊥AD,
∴∠A+∠BOD=90°;
(2)连接BD,如图.
∵BC是⊙O的直径,
∴∠BDC=90°,
∵∠BCD=∠DCF,sin∠DCE=,
∴sin∠BCD=,
∵⊙O的半径为5,
∴BC=10,
∴BD=6,
∴CD==8.
在Rt△DCE中,sin∠DCE=,
∴DE=,
∴EC=.
∵DO∥EC,
∴,即,
∴AB=.
科目:初中数学 来源: 题型:
【题目】如图,边长为的等边三角形的顶点分别在边,上当在边上运动时,随之在边上运动,等边三角形的形状保持不变,运动过程中,点到点的最大距离为( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】矩形ABCD中,AB=3,BC=4.点P在线段AB或线段AD上,点Q中线段BC上,沿直线PQ将矩形折叠,点B的对应点是点E.
(1)如图1,点P、点E在线段AD上,点Q在线段BC上,连接BP、EQ.
①求证:四边形PBQE是菱形.
②四边形PBQE是菱形时,AP的取值范围是 .
(2)如图2,点P在线段AB上,点Q在线段AD上,点E在线段AD上,若AE=,求折痕PQ的长.
(3)点P在线段AB,AP=2,点Q在线段BC上,连AE、CE.请直接写出四边形AECD的面积的最小值是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线L1:y=﹣x2+bx+c经过点A(1,0)和点B(5,0)已知直线l的解析式为y=kx﹣5.
(1)求抛物线L1的解析式、对称轴和顶点坐标.
(2)若直线l将线段AB分成1:3两部分,求k的值;
(3)当k=2时,直线与抛物线交于M、N两点,点P是抛物线位于直线上方的一点,当△PMN面积最大时,求P点坐标,并求面积的最大值.
(4)将抛物线L1在x轴上方的部分沿x轴折叠到x轴下方,将这部分图象与原抛物线剩余的部分组成的新图象记为L2
①直接写出y随x的增大而增大时x的取值范围;
②直接写出直线l与图象L2有四个交点时k的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为(10,0),(0,4),点D是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点A(0,3),B(,0),AB =6,作∠DBO=∠ABO,点H为y轴上的点,∠CAH=∠BAO,BD交y轴于点E,直线DO交AC于点C.
(1)证明:△ABE为等边三角形;
(2)若CD⊥AB于点F,求线段CD的长;
(3)动点P从A出发,沿A﹣O﹣B路线运动,速度为1个单位长度每秒,到B点处停止运动;动点Q从B出发,沿B﹣O﹣A路线运动,速度为2个单位长度每秒,到A点处停止运动.两点同时开始运动,都要到达相应的终点才能停止.在某时刻,作PM⊥CD于点M,QN⊥CD于点N.问两动点运动多长时间时△OPM与△OQN全等?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点O是等边内一点将绕点C按顺时针方向旋转得,连接已知.
求证:是等边三角形;
当时,试判断的形状,并说明理由;
探究:当为多少度时,是等腰三角形.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com