【题目】若⊙O的直径为6cm,OA="5" cm,那么点A与⊙O的位置关系是( )
A.点A在圆外B.点A在圆上C.点A在圆内D.不能确定
科目:初中数学 来源: 题型:
【题目】自主学习,请阅读下列解题过程.
解一元二次不等式:>0.
解:设=0,解得:=0,=5,则抛物线y=与x轴的交点坐标为(0,0)和(5,0).画出二次函数y=的大致图象(如图所示),由图象可知:当x<0,或x>5时函数图象位于x轴上方,此时y>0,即>0,所以,一元二次不等式>0的解集为:x<0或x>5.
通过对上述解题过程的学习,按其解题的思路和方法解答下列问题:
(1)上述解题过程中,渗透了下列数学思想中的 和 .(只填序号)
①转化思想 ②分类讨论思想 ③数形结合思想
(2)一元二次不等式<0的解集为 .
(3)用类似的方法解一元二次不等式:>0.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小亮和哥哥在离家2千米的同一所学校上学,哥哥以4千米/时的速度步行去学校,小亮因找不到书籍耽误了15分钟,而后骑自行车以12千米/时的速度去追哥哥.
(1)到校前小亮能追上哥哥吗?
(2)如果小亮追上哥哥,此时离学校有多远?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,多边形的各顶点都在方格纸的格点(横竖格子线的交错点)上,这样的多边形称为格点多边形,它的面积S可用公式(a是多边形内的格点数,b是多边形边界上的格点数)计算,这个公式称为“皮克定理”.现用一张方格纸共有200个格点,画有一个格点多边形,它的面积S=40.
(1)这个格点多边形边界上的格点数b= (用含a的代数式表示).
(2)设该格点多边形外的格点数为c,则c﹣a= .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】用配方法解方程x2+2x﹣1=0时,配方结果正确的是( )
A. (x+2)2=2 B. (x+1)2=2 C. (x+2)2=3 D. (x+1)2=3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知一元二次方程:①x2+2x+3=0,②x2﹣2x﹣3=0.下列说法正确的是( )
A.①②都有实数解 B.①无实数解,②有实数解
C.①有实数解,②无实数解 D.①②都无实数解
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,D、E在AB上,且D、E分别是AC、BC的垂直平分线上一点.
(1)若△CDE的周长为4,求AB的长;
(2)若∠ACB=100°,求∠DCE的度数;
(3)若∠ACB=a(90°<a<180°),则∠DCE=。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如果点M、N在数轴上分别表示实数m,n,在数轴上M,N两点之间的距离表示为MN=m-n(m>n)或n-m(m<n)或︱m-n︱.利用数形结合思想解决下列问题:
已知数轴上点A与点B的距离为16个单位长度,点A在原点的左侧,到原点的距离为26个单位长度,点B在点A的右侧,点C表示的数与点B表示的数互为相反数,动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒.
(1)点A表示的数为 , 点B表示的数为 , 点C表示的数为 .
(2)用含t的代数式表示P到点A和点C的距离: PA= , PC= .
(3)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动, Q点到达C点后,再立即以同样的速度返回,运动到终点A.
①在点Q向点C运动过程中,能否追上点P?若能,请求出点Q运动几秒追上.
②在点Q开始运动后,P、Q两点之间的距离能否为2个单位?如果能,请求出此时点P表示的数;如果不能,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com