精英家教网 > 初中数学 > 题目详情
10.将一副三角尺按如图方式进行摆放,则∠1的度数为120°.

分析 根据三角形的一个外角等于和它不相邻的两个内角的和计算即可.

解答 解:如图,∠1=∠2+∠3
=90°+30°
=120°,
故答案为:120°.

点评 本题考查的是三角形的外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

20.如图,△ABC中,AD、AE分别是BC边上的中线和高,点F是AB中点,作FH⊥BC于点H,FH与AD的延长线交于点G.若AC=$\sqrt{34}$,tan∠ABC=$\frac{4}{5}$,DE=FH,则HG=$\sqrt{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.问题背景:在△ABC中,AB、BC、AC三边的长分别为$\sqrt{5}$、$\sqrt{10}$、$\sqrt{13}$,求此三角形的面积.小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图①所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.
(1)请你将△ABC的面积直接填写在横线上:$\frac{7}{2}$.
思维拓展:
(2)我们把上述求△ABC面积的方法叫做构图法.如果△ABC三边的长分别为$\sqrt{5}$a、$\sqrt{8}$a、$\sqrt{17}$a(a>0),请利用图②的正方形网格(每个小正方形的边长为a)画出相应的△ABC,并求出它的面积.
探索创新:
(3)若△ABC三边的长分别为$\sqrt{{m}^{2}+16{n}^{2}}$、$\sqrt{9{m}^{2}+4{n}^{2}}$、$\sqrt{16{m}^{2}+4{n}^{2}}$ (m>0,n>0,且m≠n),试运用构图法画出示意图并求出这三角形的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.环岛是为了减少车辆行驶冲突,在多个交通路口交汇的地方设置的交通设施,多为圆形,它使车辆按统一方向行驶,将冲突点转变为通行点,能有效地减少交通事故的发生,如图是该交通环岛的简化模型(因路段FG施工,禁止从路段EF行驶过来的车辆在环岛内通行,只能往环岛外行驶),某时段内该交通环岛的进出机动车辆数如图所示,图中箭头方向表示车辆的行驶方向.
(1)求该时段内路段AB上的机动车辆数x1
(2)求该时段内从F口驶出的机动车辆数x2
(3)若a=10,b=4,求该时段内路段CD上的机动车辆处x3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.某公司销售一种新型节能产品,现准备从国内和国外两种销售方案中选择一种进行销售.
若只在国内销售,销售价格y(元/件)与月销量x(件)的函数关系式为y=-0.01x+150,成本为20元/件,无论销售多少,每月还需支出广告费62500元,设月利润为w(元).
若只在国外销售,销售价格为150元/件,受各种不确定因素影响,成本为a元/件(a为常数,10≤a≤40),当月销量为x(件)时,每月还需缴纳0.01x2元的附加费,设月利润为w(元).
(1)当x=1000时,y=140元/件;
(2)分别求出w,w与x之间的函数关系式;
(3)如果某月要求将5000件产品全部销售完,请你通过分析帮公司决策,选择在国内还是在国外销售,才能使所获月利润较大?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.
步骤1:以C为圆心,CA为半径画弧①;
步骤2:以B为圆心,BA为半径画弧②,交弧①于点D;
步骤3:连接AD,交BC延长线于点H.
下列叙述正确的是(  )
A.BH垂直平分线段ADB.AC平分∠BAD
C.S△ABC=BC•AHD.BC=CH

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.某商店以每件25元的价格购进一批商品,该商品可以自行定价,若每件商品售价a元,则可卖出(400-10a)件,但物价局限定每件商品的利润不得超过进价的30%,商店计划要盈利500元,每件商品应定价多少元?需要进货多少件?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.某班级劳动时,将全班同学分成n个小组,若每小组10人,则有一组多2人,若每小组12人,则有一组少4人,按下列哪个选项重新分组,能使每组人数相同?(  )
A.4组B.5组C.6组D.7组

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图1是一副三角尺拼成的图案:(所涉及角度均小于或等于180度)
(1)则∠EBC的度数为150度;
(2)将图1中的三角尺ABC绕点B旋转α度(0°<α<90°)能否使∠EBC=2∠ABD?若能,则求出α的值;若不能,说明理由.(图2、图3供参考)

查看答案和解析>>

同步练习册答案