精英家教网 > 初中数学 > 题目详情
已知一个二次函数的图像经过点(4,1)和(,6).
(1)求这个二次函数的解析式;
(2)求这个二次函数图像的顶点坐标和对称轴.
(1);(2)顶点坐标是(2,-3),对称轴是直线

试题分析:(1)利用待定系数法确定二次函数的解析式;
(2)把(1)中得到的解析式配成顶点式,然后根据二次函数的性质确定顶点坐标和对称轴
试题解析:
(1)由题意,得
解这个方程组,得
∴所求二次函数的解析式是
(2)顶点坐标是(2,-3).
对称轴是直线
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

将二次函数的图像向下平移1个单位后,它的顶点恰好落在轴上,则   

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系xOy中,AB在x轴上,以AB为直径的半⊙O’与y轴正半轴交于点C,连接BC,AC.CD是半⊙O’的切线,AD⊥CD于点D.

(1)求证:∠CAD =∠CAB;
(2)已知抛物线过A、B、C三点,AB=10,tan∠CAD=
① 求抛物线的解析式;
② 判断抛物线的顶点E是否在直线CD上,并说明理由;
③ 在抛物线上是否存在一点P,使四边形PBCA是直角梯形.若存在,直接写出点P的坐标(不写求解过程);若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在二次函数中,函数y与自变量x的部分对应值如下表:
x

-1
0
1
2
3

y

8
3
0
-1
0

(1)求这个二次函数的表达式;
(2)当x的取值范围满足什么条件时,

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线轴相交于A、B两点,与轴相交于点C,若已知B点的坐标为B(8,0).

(1)求抛物线的解析式及其对称轴方程;
(2)连接AC、BC,试判断△AOC与△COB是否相似?并说明理由;
(3)M为抛物线上BC之间的一点,N为线段BC上的一点,若MN∥轴,求MN的最大值;
(4)在抛物线的对称轴上是否存在点Q,使△ACQ为等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线经过点(3,0),(-1,0).
(1)求抛物线的解析式;
(2)求抛物线的顶点坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

无论取什么实数,点都在二次函数上,是二次函数上的点,则    .

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数的图象经过点A(2,-3),B(-1,0).
(1)求二次函数的解析式;
(2)观察函数图象,要使该二次函数的图象与轴只有一个交点,应把图象沿轴向上平移几个单位?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,抛物线y=ax2+bx+c与x轴的负半轴交于点A,B(点A在点B的右边),与y轴的正半轴交于点C,且OA=OC=1,则下列关系中正确的是(   )
A.a+b=1B.b<2aC.a-b=-1D.ac<0

查看答案和解析>>

同步练习册答案