【题目】如图,在正方形ABCD中,AB=,E是对角线AC上的动点,以DE为边作正方形DEFG,H是CD的中点,连接GH,则GH的最小值为____.
【答案】
【解析】
由∠ADC=∠EDG=90°,推出∠ADE=∠CDG,连接GC,容易证明△DAE≌△DCG,推出AE=CG,当E点位于C点时,G点位于AD的延长线G1处,进而推出G点在CG1这条线段上运动,再由点到直线的距离垂线段最短知,过H向CG1作垂线,得到GH的最小值.
解:连接CG,如下图所示:
∵∠ADC=∠EDG=90°
∴∠ADC-∠EDC=∠EDG-∠EDC
∴∠ADE=∠CDG
在△ADE和△CDG中
,∴△ADE和△CDG(SAS)
∴AE=CG
当E点位于C点时,G点位于G1处
当E但位于A点时,G点位于C处,
故E点在AC上运动时,G点在CG1上运动
故由点到直线的距离垂线段最短可知:
过H点作HG0⊥CG时,此时HG0最小
又H是CD的中点,∴CH=CD=
又∠DCG=45°,
∴HG0=CH=.
故答案为:
科目:初中数学 来源: 题型:
【题目】如图,正方形OABC的两边OA、OC分别在x轴、y轴上,点D(5,3)在边AB上,以C为中心,把△CDB旋转90°,则旋转后点D的对应点D′的坐标是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若A、B、C为数轴上三点,若点C到A的距离是点C到B的距离2倍,我们就称点C是(A,B)的好点.例如,如图1,点A表示的数为﹣1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是(A,B)的好点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是(A,B)的好点,但点D是(B,A)的好点.
知识运用:如图2,M、N为数轴上两点,点M所表示的数为﹣2,点N所表示的数为4.
(1)数 所表示的点是(M,N)的好点;
(2)如图3,A、B为数轴上两点,点A所表示的数为﹣20,点B所表示的数为40.现有一只电子蚂蚁P从点B出发,以2个单位每秒的速度向左运动,到达点A停止.当t为何值时,P、A和B中恰有一个点为其余两点的好点?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个不透明的袋子中装有1个白球、3个红球和6个黄球,这些球除颜色外都相同,将球摇匀.
(1) 从中任意摸出1个球,摸到 球的可能性大.
(2) 若现拿红球和黄球共7个球放入袋中,你认为怎样放才能让摸到红球和黄球的可能性相同?(直接回答,无需解题过程)
(3) 若从中摸出5个球,其中有个黄球,当= 时,“摸到白球”是必然事件?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,一次函数(为常数)的图象与反比例函数(为常数,且<0)的图象交于A,B两点.
(1) 如图①,当,时,
① A ( , ),B ( , );
②直接写出使成立的的取值范围;
(2) 如图②,将(1)中直线AB向下平移,交反比例函数图像于点C,D,连接OC,AC,若△AOC的面积为8,求的值;
(3) 若A,B两点的横坐标分别为,,且,满足,证明:2m-b=-3.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题情境:如图1,AB∥CD,∠PAB=130°,∠PCD=120°,求∠APC的度数.
小明的思路是:过P作PE∥AB,通过平行线性质来求∠APC.
(1)按小明的思路,易求得∠APC的度数为_____度;
(2)问题迁移:如图2,AB∥CD,点P在射线OM上运动,记∠PAB=α,∠PCD=β,当点P在B、D两点之间运动时,问∠APC与α、β之间有何数量关系?请说明理由;
(3)在(2)的条件下,如果点P在B、D两点外侧运动时(点P与点O、B、D三点不重合),请直接写出∠APC与α、β之间的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知一次函数的图象与坐标轴分别交于A、B点,AE平分,交轴于点E.
(1)直接写出点A和点B的坐标.
(2)求直线AE的表达式.
(3)过点B作BFAE于点F,过点F分别作FD//OA交AB于点D,FC//AB交轴于点C,判断四边形ACFD的形状并说明理由,求四边形ACFD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】随着新农村的建设和旧城的改造,我们的家园越来越美丽,小明家附近广场中央新修了一个圆形喷水池,在水池中心竖直安装了一根高米的喷水管,它喷出的抛物线形水柱在与池中心的水平距离为米处达到最高,水柱落地处离池中心米.
(1)请你建立适当的直角坐标系,并求出水柱抛物线的函数解析式;
(2)求出水柱的最大高度是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com