精英家教网 > 初中数学 > 题目详情

作业宝已知:如图,△ABC中,AB=AC,BD平分∠ABC,BC上有动点P.
(1)DP⊥BC时(如图1),求证:BP=DC+CP;
(2)DP平分∠BDC时(如图2),BD、CD、CP三者有何数量关系?

(1)证明:在BP上截取PM=PC,连接DM,
∵DP⊥BC,
∴DM=DC,
∴∠C=∠DMC,
∵AB=AC,
∴∠ABC=∠C=∠DMP,
∵BD平分∠ABC,
∴∠ABC=2∠DBC=∠C,
∴∠DMC=2∠DBC,
∵∠DMC=∠DBC+∠BDM,
∴∠DBC=∠MDB,
∴DM=BM=DC,
∴BP=BM+PM=DC+CP.

(2)解:BD=CD+CP,
理由是:在BD上截取DM=DC,连接PM,
∵DP平分∠BDC,
∴∠MDP=∠CDP,
在△MDP和△CDP中

∴△MDP≌△CDP(SAS),
∴CP=MP,∠C=∠DMP,
∵∠C=∠ABC=2∠DBC,
∴∠DMP=2∠DBC=∠DBC+∠MPB,
∴∠DBC=∠MPB,
∴BM=MP=CP,
∴BD=CD+CP.
分析:(1)在BP上截取PM=PC,连接DM,求出DM=DC,求出BM=DM,即可得出答案.
(2)在BD上截取DM=DC,连接PM,证△DCP≌△DMP,推出CP=PM,求出BM=PM,即可得出答案.
点评:本题考查了全等三角形的性质和判定,三角形的外角性质,等腰三角形的性质和判定的应用,主要考查学生的推理能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

17、已知,如图,△ABC中,∠BAC=90°,AD⊥BC于点D,BE平分∠ABC,交AD于点M,AN平分∠DAC,交BC于点N.
求证:四边形AMNE是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,∠ABC、∠ACB 的平分线相交于点F,过F作DE∥BC于D,交AC 于E,且AB=6,AC=5,求三角形ADE的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC是等边三角形,点D在AB上,点E在AC的延长线上,且BD=CE,DE交BC于F,求证:BF=CF+CE.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC中,AB=AC=10,BC=16,点D在BC上,DA⊥CA于A.
求:BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC中,AD⊥BC,BD=DE,点E在AC的垂直平分线上.
(1)请问:AB、BD、DC有何数量关系?并说明理由.
(2)如果∠B=60°,请问BD和DC有何数量关系?并说明理由.

查看答案和解析>>

同步练习册答案