【题目】(1)如图①,在△ABC中,∠C=90°,∠BAC的平分线与外角∠CBE的平分线相交于点D,求∠D的度数.
(2)如图②,将(1)中的条件“”改为,其它条件不变,请直接写出与的数量关系.
【答案】(1);(2).
【解析】
(1)由三角形外角的性质,可得∠C=∠CBE-∠CAB,∠D=∠2-∠1,又由∠BAC的平分线与外角∠CBE的平分线相交于点D,根据角平分线的性质,可得∠1=∠CAB,∠2=∠CBE,继而可求得答案;
(2)根据(1)的方法进行推导即可得答案.
(1)∵∠CBE是△ABC的外角,
∴∠CBE=∠CAB+∠C,
∴∠C=∠CBE-∠CAB,
∵∠BAC的平分线与外角∠CBE的平分线相交于点D,
∴∠1=∠CAB,∠2=∠CBE,
∵∠2是△ABD的外角,
∴∠2=∠1+∠D,
∴∠D=∠2-∠1=(∠CBE-∠CAB)=∠C=×90°=45°;
(2),理由如下:
∵∠CBE是△ABC的外角,
∴∠CBE=∠CAB+∠C,
∴∠C=∠CBE-∠CAB,
∵∠BAC的平分线与外角∠CBE的平分线相交于点D,
∴∠1=∠CAB,∠2=∠CBE,
∵∠2是△ABD的外角,
∴∠2=∠1+∠D,
∴∠D=∠2-∠1=(∠CBE-∠CAB)=∠C=α.
科目:初中数学 来源: 题型:
【题目】如图所示,在中,,,,点从点出发沿方向以的速度向点匀速运动,同时点从点出发沿方向以的速度向点匀速运动,当其中一个点到达终点时,另一个点也随之停止运动,设点运动的时间是秒().过点作于点,连接.
(1)求证:四边形是平行四边形;
(2)四边形能够成为菱形吗?如果能,求出相应的值;如果不能,请说明理由;
(3)当为何值时,为直角三角形?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,铅笔图案的五个顶点的坐标分别是(0,1),(4,1),(5,1.5),(4,2),(0,2).将图案向下平移2个单位长度,画出相应的图案,并写出平移后相应五个顶点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在下列给出的条件中,能判定四边形ABCD为平行四边形的是()
A.AB=BC,CD=DAB.AB//CD,AD=BC
C.AB//CD,∠A=∠CD.∠A=∠B,∠C=∠D
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为迎接边境贸易博览会,组织部门决定利用现有的3490盆甲种花卉和2950盆乙种花卉搭配A、B两种园艺造型共50个摆放在迎宾大道两侧,已知搭配一个A种造型需甲种花卉80盆,乙种花卉40盆,搭配一个B种造型需甲种花卉50盆,乙种花卉90盆.
(1)某校九年级(1)班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来.
(2)若搭配一个A种造型的成本是800元,搭配一个B种造型的成本是960元,试说明(1)中哪种方案成本最低?最低成本是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,矩形ABCD,E为边AB上的点,将△BCE沿CE折叠,点B恰好落在AC上点B′处.
(1)若AB=8,BC=6,求BE的长度;
(2)如图2,过点D作EC的垂线,垂足为点G,分别交BC、AC于点F、H,连结EF,若EF=AE,求证:为定值;
(3)若四边形EFCH是菱形,则=_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在读书月活动中,学校准备购买一批课外读物.为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学只选一类),如图是根
据调查结果绘制的两幅不完整的统计图.
请你根据统计图提供的信息,解答下列问题:
(1)本次调查中,一共调查了 名同学;
(2)条形统计图中,m= ,n= ;
(3)扇形统计图中,艺术类读物所在扇形的圆心角是 度;
(4)学校计划购买课外读物6000册,请根据样本数据,估计学校购买其他类读物多少册比较合理?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1是一个装有A、B两个阀门的空容器,打开A阀门水将匀速注入甲容器,打开B阀门甲容器的水将匀速注入乙容器(水流动过程的时间忽略不计),小溪先打开A阀门,几分钟后再打开B阀门,甲、乙两容器内水的体积的差值y(升)和小溪打开A阀门的时间x(分钟)之间的关系如图2所示,则图2中转折点P对应的时间是___________分钟.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AB∥CD,∠C=90°,AB=8,AD=CD=5,点M为BC上异于B、C的一定点,点N为AB上的一动点,E、F分别为DM、MN的中点,当N从A到B的运动过程中,线段EF扫过图形的面积为 ( )
A.4B.4.5C.5D.6
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com