分析 由∠ECF=∠BCD得∠DCF=∠BCE,结合DC=BC、CE=CF证△DCF≌△BCE即可得;当点E运动至点E′时,由DF=BE′知此时DF最小,求得BE′、AE′即可得答案;
解答 解:∵∠ECF=∠BCD,即∠BCE+∠DCE=∠DCF+∠DCE,
∴∠DCF=∠BCE,
∵四边形ABCD是菱形,
∴DC=BC,
在△DCF和△BCE中,$\left\{\begin{array}{l}{CF=CE}\\{∠DCF=∠BCE}\\{CD=CB}\end{array}\right.$
∴△DCF≌△BCE(SAS),
∴DF=BE;
如图1,![]()
当点E运动至点E′时,DF=BE′,此时DF最小,
在Rt△ABE′中,AB=6,tan∠ABC=tan∠BAE′=$\sqrt{3}$,
∴设AE′=x,则BE′=$\sqrt{3}$x,
∴AB=2x=6,
则AE′=x=3
∴DE′=6+3,DF=BE′=3$\sqrt{3}$,
故答案为:9,3$\sqrt{3}$;
点评 此题是旋转的性质,主要考查等边三角形的有关性质、全等三角形的判定与性质、解直角三角形及旋转的性质,熟练掌握灵活运用是解题的关键.
科目:初中数学 来源: 题型:解答题
| 三角形 | 角的已知量 | $\frac{a}{b}$ | $\frac{b+c}{a}$ |
| 图2 | ∠A=2∠B=90° | $\sqrt{2}$ | $\sqrt{2}$ |
| 图3 | ∠A=2∠B=60° | $\sqrt{3}$ | $\sqrt{3}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 12π m | B. | 18π m | C. | 20π m | D. | 24π m |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com