【题目】某校校园内有一个大正方形花坛,如图甲所示,它由四个边长为3米的小正方形组成,且每个小正方形的种植方案相同.其中的一个小正方形ABCD如图乙所示,DG=1米,AE=AF=x米,在五边形EFBCG区域上种植花卉,则大正方形花坛种植花卉的面积y与x的函数图象大致是( )
A.
B.
C.
D.
【答案】A
【解析】解:S△AEF= AE×AF= x2 , S△DEG= DG×DE= ×1×(3﹣x)= ,
S五边形EFBCG=S正方形ABCD﹣S△AEF﹣S△DEG=9﹣ x2﹣ =﹣ x2+ x+ ,
则y=4×(﹣ x2+ x+ )=﹣2x2+2x+30,
∵AE<AD,
∴x<3,
综上可得:y=﹣2x2+2x+30(0<x<3).
故选:A
先求出△AEF和△DEG的面积,然后可得到五边形EFBCG的面积,继而可得y与x的函数关系式.本题考查了动点问题的函数图象,解答本题的关键是求出y与x的函数关系式,对于有些题目可以不用求出函数关系式,根据走势或者特殊点的值进行判断.
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,BD、BE分别是高和角平分线,点F在CA的延长线上,FH⊥BE,交BD于点G,交BC于点H;下列结论:①∠DBE=∠F;②2∠BEF=∠BAF+∠C;③∠F=∠BAC-∠C;④∠BGH=∠ABE+∠C,其中正确的结论有___________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个不透明的袋子中装有黑、白小球各两个,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球后,放回并摇匀,再随机摸出一个小球,则两次摸出的小球都是白球的概率为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了改善住房条件,小亮的父母考察了某小区的两套楼房,套楼房在第层楼,套楼房在第层楼,套楼房的面积比套楼房的面积大24平方米,两套楼房的房价相同,第3层楼和第5层楼的房价分别是平均价的1.1倍和0.9倍.为了计算两套楼房的面积,小亮设套楼房的面积为平方米,套楼房的面积为平方米,根据以上信息列出了下列方程组.其中正确的是( ).
A. B.
C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+=(1+)2.善于思考的小明进行了以下探索:
设a+b=(m+n)2(其中a、b、m、n均为整数),则有a+b=m2+2n2+2mn.
∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.
请你仿照小明的方法探索并解决下列问题:
(1)当a、b、m、n均为正整数时,若a+b=(m+n)2,用含m、n的式子分别表示a、b,得:a= ,b= ;
(2)利用探索的结论,找一组正整数a、b、m、n (a、b都不超过20)
填空: + =( + )2;
(3)若a+6=(m+n)2,且a、m、n均为正整数,求a的值?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的圆O与AD、AC分别交于点E、F,且∠ACB=∠DCE.
(1)判断直线CE与⊙O的位置关系,并证明你的结论;
(2)若tan∠ACB= ,BC=2,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校住校生宿舍有大小两种寝室若干间,据统计该校高一年级男生740人,使用了55间大寝室和50间小寝室,正好住满;女生730人,使用了大寝室50间和小寝室55间,也正好住满.求该校的大小寝室每间各住多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD,BE.
(1)求证:CE=AD;
(2)当D为AB中点时,四边形BECD是什么特殊四边形?说明你的理由;
(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com