精英家教网 > 初中数学 > 题目详情

【题目】1)解不等式24x-1≥5x-8,并把它的解集在数轴上表示出来.

2)如图,在平面直角坐标系xOy中,ABC的三个顶点的坐标分别是A-30),B-6-2C-2-5).将ABC向上平移3个单位长度,再向右平移5个单位长度,得到A1B1C1

①在平面直角坐标系xOy中画出A1B1C1

②求A1B1C1的面积.

【答案】1x≥-2,如图所示见解析;(2)①如图所示,A1B1C1即为所求;见解析;②△A1B1C1的面积为

【解析】

(1)解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.

(2)①依据△ABC向上平移3个单位长度,再向右平移5个单位长度,即可得到△A1B1C1

②依据割补法进行计算,即可得到△A1B1C1的面积.

(1)2(4x-1)≥5x-8,

8x-2≥5x-8,

3x≥-6,

∴x≥-2,

如图所示:

(2)①如图所示,△A1B1C1即为所求;

②△A1B1C1的面积为4×5-×2×3-×3×4-×1×5=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,是将菱形ABCD以点O为中心按顺时针方向分别旋转90°180°270°后形成的图形。若AB=2,则图中阴影部分的面积为

A. 124 B. 5 C. 12-4 D. 6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABC是等边三角形,DF分别为BCAB边上的点,AF=BD,AD为边作等边ΔADE.

(1)求证:AE=CF;

(2)求∠BEF的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC中,CD是边AB上的高,且

(1)求证:ACD∽△CBD;

(2)求∠ACB的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,以对角线BD为一边构造一个矩形BDEF,使得另一边EF过原矩形的顶点C.

(1)设Rt△CBD的面积为S1,Rt△BFC的面积为S2,Rt△DCE的面积为S3,则S1__ __S2+S3;(填“>”“=”或“<”)

(2)写出图中的三对相似三角形,并选择其中一对进行证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,老师出示了小黑板上的题后,小华添加的条件是过点(3,0);小彬添加的条件是过点(4,3);小明添加的条件是a=1;小颖添加的条件是抛物线被x轴截得的线段长为2.你认为四人添加的条件中,正确的有(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是长为10m,倾斜角为37°的自动扶梯,平台BD与大楼CE垂直,且与扶梯AB的长度相等,在B处测得大楼顶部C的仰角为65°,求大楼CE的高度(结果保留整数).

(参考数据:sin37°≈tan37°≈sin65°≈tan65°≈

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,沿DE折叠长方形ABCD的一边,使点C落在AB边上的点F处,若AD=8,且AFD的面积为60,则DEC的面积为(  )

A.

B.

C. 18

D. 20

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下面材料:

小昊遇到这样一个问题:如图1,在ABC中,∠ACB=90°,BEAC边上的中线,点DBC边上,CD:BD=1:2,ADBE相交于点P,求的值.

小昊发现,过点AAFBC,交BE的延长线于点F,通过构造AEF,经过推理和计算能够使问题得到解决(如图2).请回答的值为 

参考小昊思考问题的方法,解决问题:

如图 3,在ABC中,∠ACB=90°,点DBC的延长线上,ADAC边上的中线BE的延长线交于点P,DC:BC:AC=1:2:3 .

(1)求的值;

(2)若CD=2,则BP=__________.

查看答案和解析>>

同步练习册答案