【题目】如图所示,,是的中点,,,求证.
【答案】见解析
【解析】
延长AM到F,使MF=AM,交CD于点N,构造平行四边形,利用条件证明△ABF≌△CAD,可得出∠BAF=∠ACD,再结合条件可得到∠ANC=90°,可证得结论.
证明:延长AM到F,使MF=AM,交CD于点N,
∵BM=EM,
∴四边形ABFE是平行四边形,
∴BF=AE,∠ABF+∠BAE=180°,
∵∠BAC=∠DAE=90°,
∴∠CAD+∠BAE=180°,
∴∠ABF=∠CAD,
∵BF=AE,AD=AE,
∴BF=AD,
在△ABF和△CAD中,,
∴△ABF≌△CAD(SAS),
∴∠BAF=∠ACD,
∵∠BAC=90°,
∴∠BAF+∠CAF=90°,
∴∠ACD+∠CAF=90°,
∴∠ANC=90°,
∴AM⊥CD.
科目:初中数学 来源: 题型:
【题目】某公司生产A种产品,它的成本是6元/件,售价是8元/件,年销售量为5万件.为了获得更好的效益,公司准备拿出一定的资金做广告,根据经验,每年投入的广告费是x万元,产品的年销售量将是原销售量的y倍,且y与x之间满足我们学过的二种函数(即一次函数和二次函数)关系中的一种,它们的关系如下表:
x(万元) | 0 | 0.5 | 1 | 1.5 | 2 | … |
y | 1 | 1.275 | 1.5 | 1.675 | 1.8 | … |
(1)求y与x的函数关系式(不要求写出自变量的取值范围)
(2)如果把利润看作是销售总额减去成本费用和广告费用,试求出年利润W(万元)与广告费用x(万元)的函数关系式,并计算每年投入的广告费是多少万元时所获得的利润最大?
(3)如果公司希望年利润W(万元)不低于14万元,请你帮公司确定广告费的范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知BE∥AO,
解:因为BE∥AO.(已知)
所以
因为,(已知 )
所以 .(等量代换)
.(等式性质)
因为 ,(已求)
所以 .(等量代换)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,过对角线BD的中点O作直线EF,分别交DA的延长线,AB, DC,BC的延长线于点E,M,N,F.
(1)求证:△ODE≌△OBF;
(2)除(1)中这对全等三角形外,再写出两对全等三角形(不需要证明).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等边三角形ABC中,BC=6 cm,射线AG∥BC,点E从点A出发沿射线AG以1 cm/s的速度运动;同时点F从点B出发沿射线BC以2 cm/s的速度运动.设运动时间为t(s).
(1)△ABC的BC边上的高为_________cm;
(2)连接EF,当EF经过AC的中点D时,求证:△ADE≌△CDF;
(3)求当t为何值时,AC与EF互相平分;
(4)当t=________s时,四边形ACFE是菱形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,△ABC中,,BD平分∠ABC,BC上有动点P.
(1)DP⊥BC时(如图1),求证:;
(2)DP平分∠BDC时(如图2),BD、CD、CP三者有何数量关系?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】以坐标原点为圆心,1为半径的圆分别交x,y轴的正半轴于点A,B.
(1)如图一,动点P从点A处出发,沿x轴向右匀速运动,与此同时,动点Q从点B处出发,沿圆周按顺时针方向匀速运动.若点Q的运动速度比点P的运动速度慢,经过1秒后点P运动到点(2,0),此时PQ恰好是⊙O的切线,连接OQ.求∠QOP的大小;
(2)若点Q按照(1)中的方向和速度继续运动,点P停留在点(2,0)处不动,求点Q再经过5秒后直线PQ被⊙O截得的弦长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,A(a,0),C(0,c)且满足:,长方形ABCO在坐标系中(如图)点O为坐标系的原点。
(1)求点B的坐标。
(2)如图1,若点M从点A出发,以2个单位/秒的速度向右运动(不超过点0),点N从原点O出发,以1个单位/秒的速度向下运动(不超过点C),设M、N两点同时出发,在它们运动的过程中,四边形MBNO的面积是否发生变化?若不变,求其值;若变化,求变化的范围。
(3)如图2,E为x轴负半轴上一点,且,F是x轴正半轴上一动点,∠ECF的平分线CD交BE的延长线于点D,在点F运动的过程中,请探究∠CFE与∠D的数量关系并说明理由。
(注:三角形三个内角的和等于)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知在△ABC中,AB=AC,AB的垂直平分线交线段AC于D,若△ABC和△DBC的周长分别是60 cm和38 cm,则△ABC的腰长和底边BC的长分别是( )
A. 22cm和16cmB. 16cm和22cm
C. 20cm和16cmD. 24cm和12cm
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com