精英家教网 > 初中数学 > 题目详情

【题目】暑假期间,某学校计划用彩色的地面砖铺设教学楼门前一块矩形操场ABCD的地面.已知这个矩形操场地面的长为100m,宽为80m,图案设计如图所示:操场的四角为小正方形,阴影部分为四个矩形,四个矩形的宽都为小正方形的边长,在实际铺设的过程总,阴影部分铺红色地面砖,其余部分铺灰色地面砖.

(1)如果操场上铺灰色地面砖的面积是铺红色地面砖面积的4倍,那么操场四角的每个小正方形边长是多少米?
(2)如果灰色地面砖的价格为每平方米30元,红色地面砖的价格为每平方米20元,学校现有15万元资金,问这些资金是否能购买所需的全部地面砖?如果能购买所学的全部地面砖,则剩余资金是多少元?如果不能购买所需的全部地面砖,教育局还应该至少给学校解决多少资金?

【答案】
(1)解:设操场四角的每个小正方形边长是x米,根据题意,

得:4x2+(100﹣2x)(80﹣2x)=4[2x(100﹣2x)+2x(80﹣2x)],

整理,得:x2﹣45x+200=0,

解得:x1=5,x2=40(舍去),

故操场四角的每个小正方形边长是5米


(2)解:设铺矩形广场地面的总费用为y元,广场四角的小正方形的边长为x米,

则,y=30×[4x2+(100﹣2x)(80﹣2x)]+20×[2x(100﹣2x)+2x(80﹣2x)]

即:y=80x2﹣3600x+240000

配方得,y=80(x﹣22.5)2+199500

当x=22.5时,y的值最小,最小值为19.95万元>15万元,

故这些资金不能购买所需的全部地面砖,教育局还应该至少给学校解决19.95﹣15=4.95万元资金.


【解析】(1)设小正方形的边长为x米,表示出里边大矩形的长为(100﹣2x)米,宽为(80﹣2x)米,利用灰色部分的面积=4个小正方形的面积+里边大矩形的面积,红色部分面积=上下两个矩形面积+左右两个矩形面积,根据灰色地面砖的面积是铺红色地面砖面积的4倍列出关于x的方程,求出方程的解得到x的值,即为小正方形的边长;(2)设铺矩形广场地面的总费用为y元,广场四角的小正方形的边长为x米,根据等量关系“总费用=铺白色地面砖的费用+铺绿色地面砖的费用”列出y关于x的函数,求得最小值,与15万元比较可得是否够用.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】宁波火车站北广场将于2015年底投入使用,计划在广场内种植A,B两种花木共6600棵,若A花木数量是B花木数量的2倍少600棵
(1)A,B两种花木的数量分别是多少棵?
(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A花木60棵或B花木40棵,应分别安排多少人种植A花木和B花木,才能确保同时完成各自的任务?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小强掷两枚质地均匀的骰子,每个骰子的六个面上分别刻有1到6的点数,则两枚骰子点数相同的概率为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线l:y= x轴于点A,交y轴于点B,点A1、A2、A3,…x轴上,点B1、B2、B3,…在直线l上.若OB1A,A1B2A2A2B3A3,…均为等边三角形,则A5B6A6的面积是__

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点O为坐标原点,△AOB为顶点A,B的坐标分别为A(0,4),B(﹣3,0),按要求解答下列问题.

(1)①在图中,先将△AOB向上平移6个单位,再向右平移3个单位,画出平移后的△A1O1B1;(其中点A,O,B的对应点为A1 , O1 , B1
②在图中,将△A1O1B1绕点O1顺时针旋转90°,画出旋转后的Rt△A2O1B2;(其中点A1 , B1的对应点为A2 , B2
(2)直接写出点A2 , B2的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC的三个顶点的坐标分别为:A(﹣2,3)、B(﹣6,0)、C(﹣1,0).

(1)将△ABC沿y轴翻折,画出翻折后的△A1B1C1 , 点A的对应点A1的坐标是
(2)△ABC关于x轴对称的图形△A2B2C2 , 直接写出点A2的坐标
(3)若△DBC与△ABC全等(点D与点A重合除外),请直接写出满足条件点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,AB=AC,AD⊥BC,CE⊥AB,AE=CE.求证:

(1)△AEF≌△CEB;
(2)AF=2CD.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将一个直角三角形纸片ABO,放置在平面直角坐标系中,点A( ,0),点B(0,1),点0(0,0).过边OA上的动点M(点M不与点O,A重合)作MN丄AB于点N,沿着MN折叠该纸片,得顶点A的对应点A′,设OM=m,折叠后的△AM′N与四边形OMNB重叠部分的面积为S.

(1)如图①,当点A′与顶点B重合时,求点M的坐标;
(2)如图②,当点A′,落在第二象限时,A′M与OB相交于点C,试用含m的式子表示S;
(3)当S= 时,求点M的坐标(直接写出结果即可).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两人利用不同的交通工具,沿同一路线从A地出发前往B地,甲出发1h后,乙出发.设甲与A地相距y(km),乙与A地相距y(km),甲离开A地时间为x(h),y、yx之间的函数图象如图所示.

(1)甲的速度是   km/h.

(2)请分别求出y、yx之间的函数关系式.

(3)当乙与A地相距240km时,甲与B地相距多少千米?

查看答案和解析>>

同步练习册答案