【题目】如图,△ABC中,DE∥AB,EF∥AB,∠BED=∠CEF,
(1)试说明△ABC是等腰三角形,
(2)探索AB+AC与四边形ADEF的周长关系.
【答案】(1)说明见解析;(2)AC+AB=四边形EFAD的周长.
【解析】
试题分析:(1)由平行线的性质可得∠EAD=∠F,∠BAF=∠E,进而再通过角之间的转化得出结论;
(2)由平行线的性质可得∠EAD=∠F,∠BAF=∠E,由于∠BED=∠CEF,得到∠C=∠CEF=∠BED=∠B,于是得到EF=CF,DE=DB,即可得到结论.
试题解析:(1)∵DE∥AC
∴∠BED=∠C,
∵EF∥AB,
∴∠CEF=∠B,
∵∠BED=∠CEF,
∴∠B=∠C,
∴△ABC是等腰三角形;
(2)AB+AC=四边形ADEF的周长,
理由:∵DE∥AC,
∴∠BED=∠C,
∵EF∥AB,
∴∠CEF=∠B,
∵∠BED=∠CEF,
∴∠C=∠CEF=∠BED=∠B,
∴EF=CF,DE=DB,
∴AC+AB=CF+AF+AD+BD=EF+AF+AD+DE=四边形EFAD的周长.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,一次函数y=ax+b(a,b为常数,且a≠0)与反比例函数y=(m为常数,且m≠0)的图象交于点A(﹣2,1)、B(1,n).
(1)求反比例函数和一次函数的解析式;
(2)连结OA、OB,求△AOB的面积;
(3)直接写出当y1<y2<0时,自变量x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】作图题
如图,在6×6的正方形网格中,每个小正方形的边长都为1.请在所给网格中按下列要求画出图形.
(1)从点A出发的一条线段AB,使它的另一个端点落在格点(即小正方形的顶点)上,且长度为;
(2)以(1)中的AB为边的一个等腰三角形ABC,使点C在格点上,且另两边的长都是无理数;
(3)画出△ABC关于点B的中心对称图形△A1B1C1.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com