精英家教网 > 初中数学 > 题目详情

【题目】如图,在中,,,,点分别在上,的面积为( )

A. B. C. D.

【答案】C

【解析】

先利用三角函数求出BE=4m,同(1)的方法判断出∠1=3,进而得出ACQ∽△CEP,得出比例式求出PE,最后用面积的差即可得出结论;


CQ=4mBP=5m
RtABC中,sinB=tanB=
如图2,过点PPEBCE


RtBPE中,PE=BPsinB=5m×=3mtanB=

BE=4mCE=BC-BE=8-4m
同(1)的方法得,∠1=3
∵∠ACQ=CEP
∴△ACQ∽△CEP
,


m=
PE=3m=
SACP=SACB-SPCB=BC×AC-BC×PE=BCAC-PE=×8×6- =,故选C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=x2+bx﹣2与x轴交于A、B两点,与y轴交于C点,且A(一1,0).

(1)求抛物线的解析式及顶点D的坐标;

(2)判断△ABC的形状,证明你的结论;

(3)点M是抛物线对称轴上的一个动点,当△ACM周长最小时,求点M的坐标及△ACM的最小周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=2x2+m.(1)若点(-2y1)与(3y2)在此二次函数的图象上,则y1_________y2(填“=”);(2)如图,此二次函数的图象经过点(0-4),正方形ABCD的顶点CDx轴上,AB恰好在二次函数的图象上,求图中阴影部分的面积之和.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣(x+1)(x3)x轴分别交于点AB(AB的右侧),与y轴交于点CP是△ABC的外接圆.

(1)直接写出点ABC的坐标及抛物线的对称轴;

(2)P的半径;

(3)D在抛物线的对称轴上,且∠BDC90°,求点D纵坐标的取值范围;

(4)E是线段CO上的一个动点,将线段AE绕点A逆时针旋转45°得线段AF,求线段OF的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某游乐园有一个直径为16米的圆形喷水池,喷水池的周边有一圈喷水头,喷出的水柱为抛物线,在距水池中心3米处达到最高,高度为5米,且各方向喷出的水柱恰好在喷水池中心的装饰物处汇合.如图所示,以水平方向为x轴,喷水池中心为原点建立直角坐标系.

(1)求水柱所在抛物线(第一象限部分)的函数表达式;

(2)王师傅在喷水池内维修设备期间,喷水管意外喷水,为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心多少米以内?

(3)经检修评估,游乐园决定对喷水设施做如下设计改进:在喷出水柱的形状不变的前提下,把水池的直径扩大到32米,各方向喷出的水柱仍在喷水池中心保留的原装饰物(高度不变)处汇合,请探究扩建改造后喷水池水柱的最大高度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若两个不重合的二次函数图象关于轴对称,则称这两个二次函数为“关于轴对称的二次函数”.

(1)请写出两个“关于轴对称的二次函数”;

(2)已知两个二次函数是“关于轴对称的二次函数”,求函数的顶点坐标(用含的式子表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在ABC中,点DE分别在边BCAC上,点FDE的延长线上,ADAFAECEDEEF

1)求证:ADE∽△ACD

2)如果AEBDEFAF,求证:ABAC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等腰三角形ABC的周长为21,底边BC=5,AB的垂直平分线DEAB于点D,AC于点E,则△BEC的周长为(  )

A. 13 B. 14 C. 15 D. 16

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为半圆O的直径,AC是⊙O的一条弦,D的中点,作DEAC,交AB的延长线于点F,连接DA

1)求证:EF为半圆O的切线;

2)若DA=DF=,求阴影区域的面积.(结果保留根号和π

查看答案和解析>>

同步练习册答案