精英家教网 > 初中数学 > 题目详情
如图,在边长为2的正方形ABCD中,M为边AD的中点,延长MD至点E,使ME=MC,以DE为边作正方形DEFG,点G在边CD上,则DG 的长为
A.B.C.D.
D

试题分析:利用勾股定理求出CM的长,即ME的长,有DM=DE,所以可以求出DE,从而得到DG的长:
∵四边形ABCD是正方形,M为边AD的中点,∴DM=DC=1。
。∴ME=MC=。∴ED=EM-DM=
∵四边形EDGF是正方形,∴DG=DE=。故选D。
第Ⅱ卷  (非选择题 共84分)
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

(1)如图1,△ABC的顶点坐标分别为A(-1,0),B(3,0),C(0,2).若将点A向右平移4个单位,则A、B两点重合;若将点A向右平移1个单位,再向上平移2个单位,则A、C两点重合.试解答下列问题:

①填空:将点C向下平移     个单位,再向右平移   个单位与点B重合;
②将点B向右平移1个单位,再向上平移2个单位得点D,请你在图中标出点D的位置,并连接BD、CD,请你说明四边形ABDC是平行四边形;
(2)如图2,△ABC的顶点坐标分别为A(-2,-1),B(2,-3),C(1,1).请问:以△ABC的两条边为边,第三边为对角线的平行四边形有几个?并直接写出第四个顶点的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

顺次连结四边形ABCD各边中点得到的四边形一定是 (       )
A.矩形B.正方形C.平行四边形D.菱形

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,以Rt△ABC的斜边BC为一边作正方形BCDE,设正方形的中心为O,连结AO,如果AB=3,AO=,那么AC的长等于(   )
A.12B.7C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列结论中,平行四边形不一定具备的是(  )
A.对角相等B.对角互补C.邻角互补D.内角和是360°

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

我们知道,矩形是特殊的平行四边形,所以矩形除了具备平行四边形的一切性质还有其特殊的性质;同样,黄金矩形是特殊的矩形,因此黄金矩形有与一般矩形不一样的知识.
已知平行四边形ABCD,∠A=60°,AB=2a,AD=a.

(1)把所给的平行四边形ABCD用两种方式分割并作说明(见题答卡表格里的示例);
要求:用直线段分割,分割成的图形是学习过的特殊图形且不超出四个.
(2)图中关于边、角和对角线会有若干关系或问题.现在请计算两条对角线的长度.
要求:计算对角线BD长的过程中要有必要的论证;直接写出对角线AC的长.
解:在表格中作答
分割图形
     分割或图形说明
示例

示例①分割成两个菱形。
②两个菱形的边长都为a,锐角都为60°。

 

 

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列命题中是假命题的是【   】
A.平行四边形的对边相等B.菱形的四条边相等
C.矩形的对边平行且相等D.等腰梯形的对边相等

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,将边长为4的正方形ABCD的一边BC与直角边分别是2和4的Rt△GEF的
一边GF重合.正方形ABCD以每秒1个单位长度的速度沿GE向右匀速运动,当点A和点E重合时正方形停止运
动.设正方形的运动时间为t秒,正方形ABCD与Rt△GEF重叠部分面积为s,则s关于t的函数图象为
A.B.
C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ABCD为菱形的是
A.AB=BCB.AC=BCC.∠B=60°D.∠ACB=60°

查看答案和解析>>

同步练习册答案