精英家教网 > 初中数学 > 题目详情

【题目】如图,在ABCD中,点EAD上,以BE为折痕将ABE翻折,点A恰好落在CD边上的点F. 已知EDF的周长为12BCF的周长为22,求CF的长.

【答案】FC=5.

【解析】

根据翻折变换的性质、平行四边形的性质证明AB+BC=17,此为解题的关键性结论;运用FCB的周长为22,求出FC的长,即可解决问题.

如图,∵四边形ABCD为平行四边形,

AD=BCAB=DC

由题意得:AE=EFAB=BF

∵△FDE的周长为12FCB的周长为22,∴DE+DF+EF=12CF+BC+BF=22

∴(DE+EA+DF+CF+BC+AB=34,即2AB+BC=34

AB+BC=17,即BF+BC=17

FC=22-17=5.

故答案为:FC=5.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】对于一次函数y=-2x+4,下列结论错误的是(  )

A. 函数的图象与x轴的交点坐标是

B. 函数值随自变量的增大而减小

C. 函数的图象不经过第三象限

D. 函数的图象向下平移4个单位长度得的图象

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,定点A(﹣2,0),动点B在直线y=x上运动,当线段AB最短时,点B的坐标为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知∠1+2180°,∠3=∠B,试说明DEBC.下面是部分推导过程,请你在括号内填上推导依据或内容:

证明:∵∠1+2180°(已知)

1=∠4    

∴∠2+4180°(等量代换)

EHAB   

∴∠B      

∵∠3=∠B(已知)

∴∠3=∠EHC(等量代换)

DEBC    

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】观察下列两个等式:,给出定义如下:我们称使等式 成立的一对有理数共生有理数对,记为(),如:数对(),(),都是共生有理数对

1)数对(),()中是共生有理数对吗?说明理由.

2)若()是共生有理数对,则()是共生有理数对吗?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2016年中考前,张老师为了解全市初三男生体育考试项目的选择情况(每人限选一项),在全市范围内随机调查了部分初三男生,将调查结果分成五类:A.推实心球(2kg);B.立定跳远;C.半场运球;D.跳绳;E.其他,并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:
(1)将上面的条形统计图补充完整;
(2)假定全市初三毕业学生中有32000名男生,试估计全市初三男生中选半场运球的人数有多少人;
(3)甲、乙两名初三男生在上述选择率较高的三个项目:B.立定跳远;C.半场运球;D.跳绳中各选一项,同时选择半场运球、立定跳远的概率是多少?请用列表法或画树形图的方法加以说明并列出所有等可能的结果.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两位探险者到沙漠进行探险,没有了水,需要寻找水源.为了不致于走散,他们用两部对话机联系,已知对话机的有效距离为15千米.早晨800甲先出发,他以6千米/时的速度向东行走,1小时后乙出发,他以5千米/时的速度向北行进,上午1000,甲、乙二人相距多远?还能保持联系吗?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】新冠肺炎疫情爆发以来,口罩成为需求最为迫切的防护物资.在这个关键时刻,我国某企业利用自身优势转产口罩,这背后不仅体现出企业强烈的社会责任感,更是我国人民团结一心抗击疫情的决心.据悉该企业3月份的口罩日产能已达到500万只,预计今后数月内都将保持同样的产能,则3月份(按31天计算)该企业生产的口罩总数量用科学记数法表示为(

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠CAB=70°,将△ABC绕点A按逆时针方向旋转一个锐角α到△AB′C′的位置,连接CC′,若CC′∥AB,则旋转角α的度数为( )

A.40°
B.50°
C.30°
D.35°

查看答案和解析>>

同步练习册答案