精英家教网 > 初中数学 > 题目详情

【题目】如图,四边形ABCD中,∠BAD120°∠B∠D90°,在BCCD上分别找一点MN,使△AMN周长最小时,则∠AMN∠ANM的度数为( )

A. 130°B. 120°C. 110°D. 100°

【答案】B

【解析】

根据要使△AMN的周长最小,即利用点的对称,让三角形的三边在同一直线上,作出A关于BCED的对称点A′A″,即可得出∠AA′M∠A″∠HAA′60°,进而得出∠AMN∠ANM2(∠AA′M∠A″)即可得出答案:

如图,作A关于BCED的对称点A′A″,连接A′A″,交BCM,交CDN

A′A″即为△AMN的周长最小值。作DA延长线AH

∵∠BAD120°∴∠HAA′60°

∴∠AA′M∠A″∠HAA′60°

∵∠MA′A∠MAA′∠NAD∠A″

∠MA′A∠MAA′∠AMN

∠NAD∠A″∠ANM

∴∠AMN∠ANM∠MA′A∠MAA′∠NAD∠A″2(∠AA′M∠A″)2×60°120°

故选B

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】用适当方法解下列方程:

(1)(3x+1)2﹣9=0;(2)x2+4x﹣1=0;(3)3x2﹣2=4x;(4)(y+2)2=1+2y.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】乘法公式的探究及应用.

(1)如图1,可以求出阴影部分的面积是 (写成两数平方差的形式);

(2)如图2,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是 ,长是 ,面积是 (写成多项式乘法的形式);

(3)比较图1、图2阴影部分的面积,可以得到公式

(4)运用你所得到的公式,计算下列各题:

①10.2×9.8,②(2m+n﹣p)(2m﹣n+p).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC中,以B为圆心,BC长为半径画弧,分别交ACABDE,连接BDDE,若∠A=30°AB=AC,则∠BDE的度数为( ).

A.52.5°B.60°C.67.5°D.75°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一块长和宽分别为60厘米和40厘米的长方形铁皮,要在它的四角截去四个相等的小正方形,折成一个无盖的长方体水槽,使它的底面积为800平方厘米.求截去正方形的边长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,n+1个直角边长为1的等腰直角三角形,斜边在同一直线上,设△B2D1C1的面积为S1,△B3D2C2的面积为S2,…,△Bn+1DnCn的面积为Sn,则S1= ,Sn= (用含n的式子表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AMBN,∠A=60°,点P是射线AM上一动点(与点A不重合),BCBD分别平分∠ABP和∠PBN,分别交射线AM于点CD


1)求∠CBD的度数;
2)当点P运动时,∠APB:∠ADB的比值是否随之变化?若不变,请求出这个比值;若变化,请找出变化规律;
3)当点P运动到某处时,∠ACB=ABD,求此时∠ABC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ADABC的边BC上的高,再添加下列条件中的某一个就能推出ABC是等腰三角形.BD=CD;②∠BAD=∠CAD;③AB+BDAC+CD AB-BD=AC-CD;⑤∠BAD=∠ACD.可以添加的条件序号正确答案是( )

A.①②B.①②③C.①②③④D.①②③④⑤.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将三角形纸片ABC沿AD折叠,使点C落在BD边上的点E处.若BC=8,BE=2.则AB2AC2的值为(  )

A. 4 B. 6 C. 10 D. 16

查看答案和解析>>

同步练习册答案