【题目】如图,在矩形ABCD中,点F在边BC上,且AF=AD,过点D作DE⊥AF,垂足为点E
(1)求证:DE=AB;
(2)以A为圆心,AB长为半径作圆弧交AF于点G,若BF=FC=1,求扇形ABG的面积.(结果保留π)
【答案】(1)证明见解析;(2).
【解析】
(1)根据矩形的性质得出∠B=90°,AD=BC,AD∥BC,求出∠DAE=∠AFB,∠AED=90°=∠B,根据AAS推出△ABF≌△DEA即可;
(2)根据勾股定理求出AB,解直角三角形求出∠BAF,根据全等三角形的性质得出DE=AB=,∠BAF=30°,根据扇形的面积公式求出即可.
(1)∵四边形ABCD是矩形,
∴∠B=90°,AD=BC,AD∥BC,
∴∠DAE=∠AFB,
∵DE⊥AF,
∴∠AED=90°=∠B,
在△ABF和△DEA中
,
∴△ABF≌△DEA(AAS),
∴DE=AB;
(2)∵BF=FC=1
∴BC=BF+FC=2
由(1)得:△ABF≌△DEA
∴AD=AF,
∵BC=AD,
∴AF =BC=2,
∵BF=1,∠ABF=90°,
∴由勾股定理得:AB=
∴sin∠BAF=,
∴∠BAF=30°
∴扇形ABG的面积=
科目:初中数学 来源: 题型:
【题目】如图1,对于平面上不大于的,我们给出如下定义:若点P在的内部或边界上,作于点E,.于点,则称为点P相对于的“优点距离”,记为
如图2,在平面直角坐标系xOy中,对于,点P为第一象限内或两条坐标轴正半轴上的动点,且满足5,点P运动形成的图形记为图形G.
(1)满足条件的其中一个点P的坐标是 __,图形G与坐标轴围成图形的面积等于 __ ;
(2)设图形G与x轴的公共点为点A,如图3,已知,,求的值;
(3)如果抛物线经过(2)中的A,B两点,点Q在A,B两点之间的物线上(点Q可与A,B两点重合),求当取最大值时,点Q 的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下列两则材料,回答问题:
材料一:平面直角坐标系中,对点A(x1,y1),B(x2,y2)定义一种新的运算:AB=x1x2+y1y2.
例如:若A(1,2),B(3,4),则AB=1×3+2×4=11
材料二:平面直角坐标系中,过横坐标不同的两点A(x1,y1),B(x2,y2)的直线的斜率为kAB=.由此可以发现若kAB==1,则有y1-y2=x1-x2,即x1-y1=x2-y2.反之,若x1,x2,y1,y2满足关系式x1-y1=x2-y2,则有y1-y2=x1-x2,那么kAB=═1.
(1)已知点M(-4,6),N(3,2),则MN=______,若点A,B的坐标分别为(x1,y1),(x2,y2)(x1≠x2),且满足关系式x1+y1=x2+y2,那么kAB=______;
(2)横坐标互不相同的三个点C,D,E满足CD=DE,且D点的坐标为(2,2),过点D作DF∥y轴,交直线CE于点F,若DF=8,请结合图象,求直线CE与坐标轴围成的三角形的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠B=90°,AB=6cm,BC=8cm,点D从点A出发以1cm/s的速度运动到点C停止.作DE⊥AC交边AB或BC于点E,以DE为边向右作正方形DEFG.设点D的运动时间为t(s).
(1)求AC的长.
(2)请用含t的代数式表示线段DE的长.
(3)当点F在边BC上时,求t的值.
(4)设正方形DEFG与△ABC重叠部分图形的面积为S(cm2),当重叠部分图形为四边形时,求S与t之间的函数关系式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点O为矩形ABCD对角线交点,,,点E、F、G分别从D,C,B三点同时出发,沿矩形的边DC、CB、BA匀速运动,点E的运动速度为,点F的运动速度为,点G的运动速度为,当点F到达点点F与点B重合时,三个点随之停止运动在运动过程中,关于直线EF的对称图形是设点E、F、G运动的时间为单位:
当______s时,四边形为正方形;
若以点E、C、F为顶点的三角形与以点F、B、G为顶点的三角形相似,求t的值;
是否存在实数t,使得点与点O重合?若存在,直接写出t的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知正方形MNOK和正六边形ABCDEF边长均为1,把正方形放在正六边形中,使OK边与AB边重合,如图所示:按下列步骤操作:将正方形在正六边形中绕点B顺时针旋转,使KM边与BC边重合,完成第一次旋转;再绕点C顺时针旋转,使MN边与CD边重合,完成第二次旋转……连续经过六次旋转.在旋转的过程中,当正方形和正六边形的边重合时,点B,M间的距离可能是( )
A. 0.5B. 0.7C. ﹣1D. ﹣1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】程大位是我国明朝商人,珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题:
一百馒头一百僧,大僧三个更无争,
小僧三人分一个,大小和尚得几丁.
意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人,下列求解结果正确的是( )
A. 大和尚25人,小和尚75人 B. 大和尚75人,小和尚25人
C. 大和尚50人,小和尚50人 D. 大、小和尚各100人
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,菱形的边轴,垂足为点,顶点在第二象限,顶点在轴的正半轴上,反比例函数的图象同时经过顶点、,若点的横坐标为5,,则的值为__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为做好汉江防汛工作,防汛指挥部决定对一段长为2500m重点堤段利用沙石和土进行加固加宽.专家提供的方案是:使背水坡的坡度由原来的1:1变为1:1.5,如图,若CD∥BA,CD=4米,铅直高DE=8米.
(1)求加固加宽这一重点堤段需沙石和土方数是多少?
(2)某运输队承包这项沙石和土的运送工程,根据施工方计划在一定时间内完成,按计划工作5天后,增加了设备,工效提高到原来的1.5倍,结果提前了5天完成任务,问按原计划每天需运送沙石和土多少m3?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com