精英家教网 > 初中数学 > 题目详情

已知:如图,在△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,CE与BD相交于点G,GH⊥BC于H. 求证:BH=CH。

 

【答案】

证明:方法一:∵AB=AC

∴∠ABC=∠ACB             

∵BD⊥AC于D,CE⊥AB于E,

∴∠ABC+∠BCE=90º,∠ACB+∠CBD=90º               

     ∴∠BCE=∠CBD          

∴BG=CG           

∵GH⊥BC于H

∴BH=CH.          

方法二:∵CE⊥AB于E,BD⊥AC于D,

∴∠1=90º=∠2      

在△AEC和△ADB中

∴△AEC≌△ADB (AAS)

∴∠3=∠4            

∵AB=AC   ∴∠ABC=∠ACB

∴∠ABC-∠3=∠ACB-∠4

即∠5=∠6        

∴BG=CG    

∵GH⊥BC于H    ∴BH=CH.    

【解析】方法一:先根据等边对等角得到∠ABC=∠ACB,再根据三角形内角和得到∠BCE=∠CBD,从而BG=CG,再有GH⊥BC,根据等腰三角形“三线合一”可得BH=CH.

 方法二:先由AAS证得△AEC≌△ADB,得到∠3=∠4,再由AB=AC据等边对等角得到∠ABC=∠ACB,从而∠5=∠6,所以BG=CG,再有GH⊥BC,根据等腰三角形“三线合一”可得BH=CH.

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

34、已知:如图,在AB、AC上各取一点,E、D,使AE=AD,连接BD,CE,BD与CE交于O,连接AO,∠1=∠2,
求证:∠B=∠C.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•启东市一模)已知,如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.
(1)以AB边上一点O为圆心,过A,D两点作⊙O(不写作法,保留作图痕迹),再判断直线BC与⊙O的位置关系,并说明理由;
(2)若(1)中的⊙O与AB边的另一个交点为E,半径为2,AB=6,求线段AD、AE与劣弧DE所围成的图形面积.(结果保留根号和π)《根据2011江苏扬州市中考试题改编》

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在△ABC中,∠C=120°,边AC的垂直平分线DE与AC、AB分别交于点D和点E.
(1)作出边AC的垂直平分线DE;
(2)当AE=BC时,求∠A的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图,在AB、AC上各取一点E、D,使AE=AD,连接BD,CE,BD与CE交于O,连接AO,∠1=∠2,
求证:∠B=∠C.

查看答案和解析>>

科目:初中数学 来源:专项题 题型:证明题

已知:如图,在AB、AC上各取一点,E、D,使AE=AD,连结BD,CE,BD与CE交于O,连结AO,
           ∠1=∠2;
求证:∠B=∠C

查看答案和解析>>

同步练习册答案