精英家教网 > 初中数学 > 题目详情
3.下列命题中,不正确的是(  )
A.对角线相等的平行四边形是矩形
B.对角线互相垂直的四边形是菱形
C.三角形的中位线平行于第三边且等于第三边的一半
D.三角形的一条中线能将三角形分成面积相等的两部分

分析 根据矩形的判定方法对A矩形判断;根据菱形的判定方法对B矩形判断;根据三角形中位线性质对C矩形判断;根据三角形中线定义和三角形面积公式对D矩形判断.

解答 解:A、对角线相等的平行四边形是矩形,所以A选项为真命题;
B、对角线互相垂直的平行四边形是菱形,所以B选项为假命题;
C、三角形的中位线平行于第三边且等于第三边的一半,所以C选项为真命题;
D、三角形的一条中线能将三角形分成面积相等的两部分,所以D选项为真命题.
故选B.

点评 本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式. 有些命题的正确性是用推理证实的,这样的真命题叫做定理.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

13.如图,△ABC中,AD是∠BAC的角平分线,AB=4,AC=3,则△ABD与△ADC的面积比是4:3.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.如图,矩形ABCD的一边CD在x轴上,顶点A、B分别落在双曲线y=$\frac{1}{x}$(x>0)、y=$\frac{3}{x}$(x>0)上,边BC交双曲线y=$\frac{1}{x}$(x>0)于点E,连接AE,则△ABE的面积为$\frac{2}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.在正方形网格中,△ABC的位置如图所示,则sin∠BAC的值为(  )
A.$\frac{3}{5}$B.$\frac{3}{4}$C.$\frac{4}{5}$D.$\frac{4}{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,小明将一根长为1.4米的竹条截为两段,并互相垂直固定,作为风筝的龙骨,制作成了一个面积为0.24米2的风筝.请你计算一下将竹条截成长度分别为多少的两段?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,反比例函数y=$\frac{k}{x}$(x>0)的图象经过线段OA的端点A,O为原点,作AB⊥x轴于点B,点B的坐标为(2,0),tan∠AOB=$\frac{3}{2}$.
(1)求k的值;
(2)将线段AB沿x轴正方向平移到线段DC的位置,反比例函数y=$\frac{k}{x}$(x>0)的图象恰好经过DC上一点E,且DE:EC=2:1,求直线AE的函数表达式;
(3)若直线AE与x轴交于点,N,与y轴交于点M,请你探索线段AM与线段NE的大小关系,写出你的结论并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图1,四边形ABCD是正方形,M是BC边上的一点,E是CD边的中点,AE平分∠DAM.
(1)求证:AD+MC=DE+BM;
(2)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图2,(1)中的结论是否还成立?若成立,请证明;若不成立,请说明理由.
(3)图1中,若正方形的边长是2,求四边形AMCE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.用火柴棒按如图两种方式搭图形,若搭(x+1)个等边三角形与搭y个正六边形所用的火柴棒根数相同,则$\frac{x+1}{y}$的值为$\frac{5}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.如图,在一个平行四边形中,两对平行于边的直线将这个平行四边形分为九个小平行四边形,如果原来这个平行四边形的面积为100cm2,而中间那个小平行四边形(阴影部分)的面积为20平方厘米,则四边形ABDC的面积是60cm2

查看答案和解析>>

同步练习册答案