精英家教网 > 初中数学 > 题目详情

【题目】如图所示,E为正方形ABCD的边BC延长线上一点,且CEACAECD于点F,那么∠AFC的度数为(

A. 112.5° B. 125° C. 135° D. 150°

【答案】A

【解析】

根据等边对等角的性质可得∠E=CAE,然后根据正方形的对角线平分一组对角以及三角形的一个外角等于与它不相邻的两个内角的和列式求出∠E=22.5°,再根据 三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.

解:∵CE=AC

∴∠E=CAE

AC是正方形ABCD的对角线,

∴∠ACB=45°,

∴∠E+CAE=45°,

∴∠E=×45°=22.5°,

在△CEF中,∠AFC=E+ECF=22.5°+90°=112.5°.

故答案为:A

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】《算法统宗》是中国古代数学名著,作者是我国明代数学家程大位.在《算法统宗》中记载:以绳测井,若将绳三折测之,绳多4尺,若将绳四折测之,绳多1尺,绳长井深各几何?

译文:用绳子测水井深度,如果将绳子折成三等份,井外余绳4尺;如果将绳子折成四等份,井外余绳1尺.问绳长、井深各是多少尺?

设井深为x尺,根据题意列方程,正确的是(  )

A. 3(x+4)=4(x+1) B. 3x+4=4x+1

C. 3(x﹣4)=4(x﹣1) D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,∠A=90°,AD∥BC,E为AB的中点,连接CE,BD,过点E作FE⊥CE于点E,交AD于点F,连接CF,已知2AD=AB=BC.

(1)求证:CE=BD;
(2)若AB=4,求AF的长度;
(3)求sin∠EFC的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某公司欲招聘一名部门经理,对甲、乙、丙三名候选人进行了三项素质测试.各项测试成绩如表格所示:

测试项目

测试成绩

专业知识

74

87

90

语言能力

58

74

70

综合素质

87

43

50

(1)如果根据三次测试的平均成绩确定人选,那么谁将被录用?

(2)根据实际需要,公司将专业知识、语言能力和综合素质三项测试得分按4:3:1的比例确定每个人的测试总成绩,此时谁将被录用?

(3)请重新设计专业知识、语言能力和综合素质三项测试得分的比例来确定每个人的测试总成绩,使得乙被录用,若重新设计的比例为xy:1,且x+y+1=10,则x   y   .(写出xy的一组整数值即可).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点EF在直线AB上,点G在线段CD上,EDFG交于点H,∠C=∠EFG,∠CED=∠GHD

1)求证:CEGF

2)试判断∠AED与∠D之间的数量关系,并说明理由;

3)若∠EHF80°,∠D30°,求∠AEM的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元
(1)如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件?
(2)如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图△ABC内有一点D且DA=DB=DC.若∠DAB=20°,∠DAC=30°,则∠BDC的度数为( )

A. 100° B. 80° C. 70° D. 50°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=BC,CD⊥AB于点D,CD=BD.BE平分∠ABC,点H是BC边的中点.连接DH,交BE于点G.连接CG.

(1)求证:△ADC≌△FDB;

(2)求证:

(3)判断△ECG的形状,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,OC是∠AOB的平分线,OD是∠AOC的平分线,OE是∠BOD的平分线,且∠BOE30°,求∠AOB的度数.

查看答案和解析>>

同步练习册答案