【题目】如图,有一座抛物线型拱桥,已知桥下在正常水位AB时,水面宽8m,水位上升3m, 就达到警戒水位CD,这时水面宽4m,若洪水到来时,水位以每小时0.2m的速度上升,求水过警戒水位后几小时淹到桥拱顶.
【答案】5小时.
【解析】试题分析;
首先在图中建立合适的坐标系(这里选择AB所在直线为x轴,AB的垂直平分线为y轴,也可另外建立),然后根据题目中的已知条件可得A、B、C、D四点的坐标,设出解析式,代入相应点的坐标建立方程(组),解方程(组)求得待定系数的值得到解析式,由解析式可得顶点E的坐标,再结合题中条件可解得答案;
试题解析:
如上图,以AB所在直线为x轴,AB的垂直平分线为y轴建立平面直角坐标系,则由已知得A(4,0),D(2,3),设抛物线解析式为: ,把A、D坐标代入解析式可得: ,解得: ,∴抛物线解析式为: ,
∴顶点E的坐标为(0,4),
设CD与y轴的交点为点F,
∴EF=4-3=1(m),
∵10.2=5(小时),
∴水过警戒水位后5小时淹到桥拱顶.
科目:初中数学 来源: 题型:
【题目】已知平面直角坐标系中两定点、,抛物线过点A,B,与y交于C点,点P(m,n)为抛物线上一点.
(1)求抛物线的解析式和点C的坐标;
(2)当∠APB为钝角时,求m的取值范围;
(3)当∠PAB=∠ABC时,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB⊥BC,DC⊥BC,E是BC上一点,使得AE⊥DE;
(1)求证:△ABE∽△ECD;
(2)若AB=4,AE=BC=5,求CD的长;
(3)当△AED∽△ECD时,请写出线段AD、AB、CD之间数量关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC是等腰三角形,AB=AC,∠A=36°.
(1)用尺规作∠ABC的角平分线BD,交AC于点D;(保留作图痕迹,不写作法);
(2)过点C作CE//BD,且CE=BD,求证:四边形BCED是菱形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下面关于x的方程中:①ax2+x+2=0;②3(x﹣9)2﹣(x+1)2=1;③x+3=;④(a2+a+1)x2﹣a=0;⑤=x﹣1.一元二次方程的个数是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知是等边三角形,点是直线上一点,以为一边在的右侧作等边.
(1)如图①,点在线段上移动时,直接写出和的大小关系;
(2)如图②,点在线段的延长线上移动时,猜想的大小是否发生变化.若不变请求出其大小;若变化,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形网格图中建立一直角坐标系,一条圆弧经过网格点
A(0,2),B(4,2)C(6,0),解答下列问题:
(1)请在图中确定该圆弧所在圆心D点的位置,则D点坐标为___ ___;
(2)连结AD,CD,求⊙D的半径(结果保留根号);
(3)若把扇形DAC围成一个圆锥,求围成圆锥的底面半径(结果保留根号).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,AD=6,DC=8,矩形EFGH的三个顶点E、G、H分别在矩形ABCD的边ABCD的边AB、CD、DA上,AH=2,连接CF.当△CGF是直角三角形时,线段AE的长为______.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com