精英家教网 > 初中数学 > 题目详情

【题目】如图,△ABC是等腰三角形,AB=AC,∠A=36°.

(1)用尺规作∠ABC的角平分线BD,交AC于点D;(保留作图痕迹,不写作法);

(2)过点C作CE//BD,且CE=BD,求证:四边形BCED是菱形.

【答案】(1)答案见解析;(2)答案见解析

【解析】

(1)利用基本作图作∠ABC的平分线BD

(2)先利用等腰三角形的性质和三角形内角和计算出∠ABC=∠BCA=(180°﹣∠A)=72°,再利用角平分线定义得到∠CBD=∠ABD=36°,接着根据三角形外角性质得到∠BDC=72°,然后根据等腰三角形的判定定理得到BD=BC再由四边形DBCE是平行四边形即可得出结论

1)如图BD为所作

(2)∵AB=AC,∴∠ABC=∠BCA =(180°﹣∠A)=(180°﹣36°)=72°.

BD平分∠ABC,∴∠CBD=∠ABD=ABC=36°,∴∠BDC=∠A+∠ABD=36°+36°=72°,∴∠BCA =∠BDC,∴BD=BC

CEBDCE=BD,∴四边形DBCE是平行四边形,∴平行四边形DBCE是菱形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在四个均由十六个小正方形组成的正方形网格中,各有一个三角形ABC,那么这四个三角形中,不是直角三角形的是(  )

A. B.

C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线y=ax2+bx+cx轴于A、B两点(AB的左侧),且OA=3,OB=1,与y轴交于C(0,3),抛物线的顶点坐标为D(﹣1,4).

(1)求A、B两点的坐标;

(2)求抛物线的解析式;

(3)过点D作直线DEy轴,交x轴于点E,点P是抛物线上B、D两点间的一个动点(点P不与B、D两点重合),PA、PB与直线DE分别交于点F、G,当点P运动时,EF+EG是否为定值?若是,试求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,的切线,切点分别为两点,点上,如果,那么的度数是________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明在课外学习时遇到这样一个问题:

定义:如果二次函数满足,则称这两个函数互为旋转函数

求函数旋转函数

小明是这样思考的:由函数可知,,根据,求出,就能确定这个函数的旋转函数

请参考小明的方法解决下面问题:

(1)直接写出函数旋转函数

(2)若函数互为旋转函数,求的值;

(3)已知函数的图象与轴交于点A、B两点(A在B的左边),与轴交于点C,点A、B、C关于原点的对称点分别是A1,B1,C1,试证明经过点A1,B1,C1的二次函数与函数互为旋转函数

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在五张正面分别写有数字﹣2﹣1012的卡片,它们的背面完全相同,现将这五张卡片背面朝上洗匀.

1)从中任意抽取一张卡片,则所抽卡片上数字的绝对值不大于1的概率是

2)先从中任意抽取一张卡片,以其正面数字作为a的值,然后再从剩余的卡片随机抽一张,以其正面的数字作为b的值,请用列表法或画树状图法,求点Qab)在第二象限的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,有一座抛物线型拱桥,已知桥下在正常水位AB时,水面宽8m,水位上升3m就达到警戒水位CD,这时水面宽4m若洪水到来时,水位以每小时0.2m的速度上升,求水过警戒水位后几小时淹到桥拱顶.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】△ABC中,AB=AC,∠BAC=120,AD⊥BC,且AD=AB.

(1)如图1,DE⊥AB,DF⊥AC,垂足分别为点E,F,求证:AE+AF=AD

(2)如图2,如果∠EDF=60,且∠EDF两边分别交边AB,AC于点E,F,那么线段AE,AF,AD之间有怎样的数量关系?并给出证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】本题满分8分一个不透明的口袋中装有2个红球记为红球1、红球2、1个白球、1个黑球,这些球除颜色外都相同,将球摇匀.

1从中任意摸出1个球,恰好摸到红球的概率是

2先从中任意摸出1个球,再从余下的3个球中任意摸出1个球,请用列举法画树状图或列表求两次都摸到红球的概率.

查看答案和解析>>

同步练习册答案