【题目】对于二次函数y=x2+mx+1,当0<x≤2时的函数值总是非负数,则实数m的取值范围为( )
A. m≥﹣2 B. ﹣4≤m≤﹣2 C. m≥﹣4 D. m≤﹣4或m≥﹣2
科目:初中数学 来源: 题型:
【题目】A、B两地相距60km,甲、乙两人从两地出发相向而行,甲先出发.图中表示两人离A地的距离S(km)与时间t(h)的关系,结合图像回答下列问题:
(1)表示乙离开A地的距离与时间关系的图像是________(填);
甲的速度是__________km/h;乙的速度是________km/h。
(2)甲出发后多少时间两人恰好相距5km?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2+2ax-3a的图像与x轴交于A、B两点(点A在点B的右边),与y轴交于点C.
(1)请直接写出A、B两点的坐标:A , B ;
(2)若以AB为直径的圆恰好经过这个二次函数图像的顶点.
①求这个二次函数的表达式;
②若P为二次函数图像位于第二象限部分上的一点,过点P作PQ平行于y轴,交直线BC于点Q.连接OQ、AQ,是否存在一个点P,使tan∠OQA=?如果存在,请求出点P的坐标;如果不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线经过A(,0),B(,0),C(0,2)三点.
(1)求抛物线的解析式;
(2)在直线AC下方的抛物线上有一点D,使得△DCA的面积最大,求点D的坐标;
(3)设点M是抛物线的顶点,试判断抛物线上是否存在点H满足?若存在,请求出点H的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读材料,解答问题.
利用图象法解一元二次不等式:x2-2x-3>0.
解:设y=x2-2x-3,则y是x的二次函数.∵a=1>0,∴抛物线开口向上.
又∵当y=0时,x2-2x-3=0,解得x1=-1,x2=3.
∴由此得抛物线y=x2-2x-3的大致图象如图所示.
观察函数图象可知:当x<-1或x>3时,y>0.
∴x2-2x-3>0的解集是:x<-1或x>3.
(1)观察图象,直接写出一元二次不等式:x2-2x-3<0的解集是 ;
(2)仿照上例,用图象法解一元二次不等式:x2-1>0.(大致图象画在答题卡上)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某糕点厂中秋节前要制作一批盒装月饼,每盒中装2块大月饼和4块小月饼.制作1块大月饼要用0.05kg面粉,1块小月饼要用0.02kg面粉.现共有面粉4500kg,问制作两种月饼应各用多少面粉,才能生产最多的盒装月饼?(用一元一次方程解答)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在数轴上A点表示数-3,B点表示数b,C点表示数c,且b.c满足
(1)b= ,c= .
(2)若使C.B两点的距离是A.B两点的距离的2倍,则需将点C向左移动 个单位长度.
(3)点A.B.C开始在数轴上运动,若点A以每秒m个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,设运动时间为t秒;
①点A.B.C表示的数分别是 . . (用含m.t的代数式表示);
②若点B与点C之间的距离表示为d1,点A与点B之间的距离表示为d2,当m为何值时,2d1-d2的值不会随着时间t的变化而改变,并求出此时2d1-d2的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】周末,小明从家步行去书店看书.出发小时后距家1.8千米时,爸爸驾车从家沿相同路线追赶小明,在地追上小明后,二人驾车继续前行到达书店.小明在书店看书,爸爸去单位地办事.如图是小明与爸爸两人之间距离(千米)与小明出发的时间(小时)之间的函数图象,(小明步行速度与爸爸驾车速度始终保持不变,彼此交流时间忽略不计),请根据图象回答下列问题:
(1)小明步行速度是_____千米/小时,爸爸驾车速度是______千米/小时:
(2)图中点的坐标是______:
(3)求书店与家的路程;
(4)求爸爸出发多长时间,两人相距3千米.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com