相关习题
 0  348580  348588  348594  348598  348604  348606  348610  348616  348618  348624  348630  348634  348636  348640  348646  348648  348654  348658  348660  348664  348666  348670  348672  348674  348675  348676  348678  348679  348680  348682  348684  348688  348690  348694  348696  348700  348706  348708  348714  348718  348720  348724  348730  348736  348738  348744  348748  348750  348756  348760  348766  348774  366461 

科目: 来源: 题型:

【题目】如图,已知点A是双曲线y= 在第一象限的分支上的一个动点,连结AO并延长交另一分支于点B,以AB为斜边做等腰直角△ABC,点C在第四象限.随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y= (k<0)上运动,则k的值是

查看答案和解析>>

科目: 来源: 题型:

【题目】阅读下面材料:

小明遇到这样一个问题:如图1,在ABC中,DEBC分别交ABD,交ACE.已知CDBE,CD=3,BE=4,求BC+DE的值.

小明发现,过点EEFDC,交BC延长线于点F,构造BEF,经过推理和计算能够使问题得到解决(如图2).

(1)请按照上述思路完成小明遇到的这个问题

(2)参考小明思考问题的方法,解决问题:

如图3,已知ABCD和矩形ABEF,ACDF交于点G,AC=BF=DF,求∠DGC的度数.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在梯形ABCD中,AD∥BC,AB∥DE,AF∥DC,E、F两点在BC上,且四边形AEFD是平行四边形.

(1)ADBC有何等量关系?请说明理由;

(2)当AB=DC时,求证:四边形AEFD是矩形.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知点A是双曲线y= 在第一象限的分支上的一个动点,连结AO并延长交另一分支于点B,以AB为斜边做等腰直角△ABC,点C在第四象限.随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y= (k<0)上运动,则k的值是

查看答案和解析>>

科目: 来源: 题型:

【题目】矩形ABCD中,AC、BD相交于O,AE平分∠BADBCE.

(1)求证:ABE是等腰直角三角形;

(2)若∠CAE=15°,求证:ABO是等边三角形;

(3)在(2)的条件下,求∠BOE的度数.

查看答案和解析>>

科目: 来源: 题型:

【题目】阅读下面的材料:

如图①,在△ABC中,试说明∠A+∠B+∠C=180°.

分析:通过画平行线,将∠A、∠B、∠C作等量代换,使各角之和恰为一个平角,依辅助线不同而得多种方法.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在边长为1的正方形ABCD中,动点F,E分别以相同的速度从D,C两点同时出发向C和B运动(任何一个点到达即停止),过点P作PM∥CD交BC于M点,PN∥BC交CD于N点,连接MN,在运动过程中,则下列结论:
①△ABE≌△BCF;②AE=BF;③AE⊥BF;④CF2=PEBF;⑤线段MN的最小值为
其中正确的结论有( )

A.2个
B.3个
C.4个
D.5个

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在边长为1的正方形ABCD中,动点F,E分别以相同的速度从D,C两点同时出发向C和B运动(任何一个点到达即停止),过点P作PM∥CD交BC于M点,PN∥BC交CD于N点,连接MN,在运动过程中,则下列结论:
①△ABE≌△BCF;②AE=BF;③AE⊥BF;④CF2=PEBF;⑤线段MN的最小值为
其中正确的结论有( )

A.2个
B.3个
C.4个
D.5个

查看答案和解析>>

科目: 来源: 题型:

【题目】根据你的经验,分别求下列事件的概率:

(1)在一个不透明的袋中装有红球3个,白球2个,黑球1个,每种球除颜色外其余都相同,摇匀后随机地从袋中取出1个球,取到红球的概率.

(2)投掷一枚普通正方体骰子,出现的点数为7的概率.

(3)投掷两枚普通硬币,出现两个正面的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,E点为DF上的点,B为AC上的点,,求证:DF∥AC.

证明:∵ (已知),∠1=∠3,∠2=∠4( ),

∴∠3=∠4(等量代换).

∴____________________( ).

∴∠C=∠ABD( ).

∵∠C=∠D( ),

∴∠D=__________( ).

∴AC∥DF( ).

查看答案和解析>>

同步练习册答案