科目: 来源: 题型:
【题目】李同学每天上学、放学使用公交卡乘坐公交车,公交卡的余额是100元.如果乘车次数用
表示,公交卡上的余额用
表示.
次数 | 余额 |
1 |
|
2 |
|
3 |
|
… | … |
(1)请你根据表格中的信息,计算出第4次乘车后,公交卡上的余额;
(2)请你写出李同学公交卡上的余额
与乘车次数
的关系式;
(3)请帮李同学计算乘20次车后,公交卡上余额是多少元.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,点A的坐标为(1,2),AB⊥x轴于点B,将△AOB绕点A逆时针旋转90°得到△ACD,双曲线y=
(x>0)恰好经过点C,交AD于点E,则点E的坐标为 . ![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图是某运算程序,该程序是循环迭代的一种.根据该程序的指令,如果输入
的值是10,那么得到第1次输出的值是5;把第1次输出的值再次输入,那么第2次输出的值是6;把第2次输出的值再次输入,那么第3次输出的值是3;…,第2018次输出的值是( )
![]()
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在菱形ABCD中,AB=6,∠DAB=60°,点E在BC边上,且CE=2,AE与BD交于点F,连接CF,则下列结论不正确的是( ) ![]()
A.△ABF≌△CBF
B.△ADF∽△EBF
C.tan∠EAB= ![]()
D.S△EAB=6 ![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】谷歌人工智能AlphaGo机器人与李世石的围棋挑战赛引起人们的广泛关注,人工智能完胜李世石.某教学网站开设了有关人工智能的课程并策划了A,B两种网上学习的月收费方式:
收费 方式 | 月使用费(元) | 包时上网 时间(h) | 超时费(元/min) |
A | 7 | 25 | 0.6 |
B | 10 | 50 | 0.8 |
设小明每月上网学习人工智能课程的时间为x小时,方案A,B的收费金额分别为yA元,yB元.
(1)当x≥50时,分别求出yA,yB与x之间的函数关系式;
(2)若小明3月份上该网站学习的时间为60小时,则他选择哪种方式上网学习合算?
查看答案和解析>>
科目: 来源: 题型:
【题目】已知a是最大的负整数,b是多项式2m2n﹣m3n2﹣m﹣2的次数,c是单项式﹣2xy2的系数,且a、b、c分别是点A、B、C在数轴上对应的数.
![]()
(1)求a、b、c的值,并在数轴上标出点A、B、C.
(2)若M点在此在此数轴上运动,请求出M点到AB两点距离之和的最小值;
(3)若动点P、Q同时从A、B出发沿数轴负方向运动,点P的速度是每秒
个单位长度,点Q的速度是每秒2个单位长度,求运动几秒后,点Q能追上点P?
(4)在数轴上找一点N,使点M到A、B、C三点的距离之和等于10,请直接写出所有的N对应的数.(不必说明理由)
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,圆柱形玻璃容器高19cm,底面周长为60cm,在外侧距下底1.5cm的点A处有一只蜘蛛,在蜘蛛正对面的圆柱形容器的外侧,距上底1.5cm处的点B处有一只苍蝇,蜘蛛急于捕捉苍蝇充饥,请你帮蜘蛛计算它沿容器侧面爬行的最短距离.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】①在数轴上没有点能表示
+1;②无理数是开不尽方的数;③存在最小的实数;④4的平方根是±2,用式子表示是
=±2;⑤某数的绝对值,相反数,算术平方根都是它本身,则这个数是0,其中正确的是______.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,正方形ABCD和正方形A1B1C1D1的对角线(正方形相对顶点之间所连的线段)BD,B1D1都在x轴上,O,O1分别为正方形ABCD和正方形A1B1C1D1的中心(正方形对角线的交点称为正方形的中心),O为平面直角坐标系的原点.OD=3,O1D1=2.
(1)如果O1在x轴上平移时,正方形A1B1C1D1也随之平移,其形状、大小没有改变,当中心O1在x轴上平移到两个正方形只有一个公共点时,求此时正方形A1B1C1D1各顶点的坐标;
(2)如果O在x轴上平移时,正方形ABCD也随之平移,其形状、大小没有改变,当中心O在x轴上平移到两个正方形公共部分的面积为2个平方单位时,求此时正方形ABCD各顶点的坐标.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,四边形ABCO在平面直角坐标系中,且A(1,2),B(5,4),C(6,0),O(0,0).
(1)求四边形ABCO的面积;
(2)将四边形ABCO四个顶点的横坐标都减去3,同时纵坐标都减去2,画出得到的四边形A′B′C′O′,你能从中得到什么结论?
(3)直接写出四边形A′B′C′O′的面积.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com