相关习题
 0  349271  349279  349285  349289  349295  349297  349301  349307  349309  349315  349321  349325  349327  349331  349337  349339  349345  349349  349351  349355  349357  349361  349363  349365  349366  349367  349369  349370  349371  349373  349375  349379  349381  349385  349387  349391  349397  349399  349405  349409  349411  349415  349421  349427  349429  349435  349439  349441  349447  349451  349457  349465  366461 

科目: 来源: 题型:

【题目】如图,在ABC中,AQ=PQPR=PSPRABRPSACS,则三个结论:①AS=ARQPAR③△BPR≌△QPS一定正确的是( )

A. 全部正确 B. 仅①和②正确 C. 仅①正确 D. 仅①和③正确

查看答案和解析>>

科目: 来源: 题型:

【题目】某企业新增了一个化工项目,为了节约资源,保护环境,该企业决定购买A、B两种型号的污水处理设备共8台,具体情况如下表:

A型

B型

价格(万元/台)

12

10

月污水处理能力(吨/月)

200

160

经预算,企业最多支出89万元购买设备,且要求月处理污水能力不低于1380吨.
(1)该企业有几种购买方案?
(2)哪种方案更省钱,说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】林城市对教师试卷讲评课中学生参与的深度和广度进行评价,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中学生的参与情况,绘制了如图两幅不完整的统计图,请根据图中所给信息解答下列问题:
(1)在这次评价中,一共抽查了名学生;
(2)请将条形统计图补充完整;
(3)如果全市有16万名初中学生,那么在试卷讲评课中,“独立思考”的学生约有多少万人?

查看答案和解析>>

科目: 来源: 题型:

【题目】若点P1(﹣1,m),P2(﹣2,n)在反比例函数y= (k>0)的图像上,则mn(填“>”“<”或“=”号).

查看答案和解析>>

科目: 来源: 题型:

【题目】在正方形ABCD中,对角线AC与BD交于点O;在Rt△PMN中,∠MPN=90°.

(1)如图1,若点P与点O重合且PM⊥AD、PN⊥AB,分别交AD、AB于点E、F,请直接写出PE与PF的数量关系;
(2)将图1中的Rt△PMN绕点O顺时针旋转角度α(0°<α<45°).
①如图2,在旋转过程中(1)中的结论依然成立吗?若成立,请证明;若不成立,请说明理由;
②如图2,在旋转过程中,当∠DOM=15°时,连接EF,若正方形的边长为2,请直接写出线段EF的长;
③如图3,旋转后,若Rt△PMN的顶点P在线段OB上移动(不与点O、B重合),当BD=3BP时,猜想此时PE与PF的数量关系,并给出证明;当BD=mBP时,请直接写出PE与PF的数量关系.

查看答案和解析>>

科目: 来源: 题型:

【题目】课外兴趣小组活动时,老师出示了如下问题:如图①,已知在四边形ABCD中,AC平分∠DAB,DAB=60°,B与∠D互补,求证:AB+AD=AC.

小敏反复探索,不得其解.她想,可先将四边形ABCD特殊化,再进一步解决该问题.

(1)由特殊情况入手,添加条件:B=D”,如图②,可证AB+AD=AC.请你完成此证明.

(2)受到(1)的启发,在原问题中,添加辅助线:过C点分别作AB,AD的垂线,垂足分别为点E,F,如图③.请你补全证明过程.

查看答案和解析>>

科目: 来源: 题型:

【题目】结合数轴与绝对值的知识回答下列问题:

(1)数轴上表示41的两点之间的距离是   ;表示﹣32两点之间的距离是   ;一般地,数轴上表示数m和数n的两点之间的距离等于|mn|.如果表示数a和﹣2的两点之间的距离是3,那么a   

(2)若数轴上表示数a的点位于﹣42之间,求|a+4|+|a﹣2|的值;

(3)当a取何值时,|a+5|+|a﹣1|+|a﹣4|的值最小,最小值是多少?请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,抛物线C1:y=x2+bx+c经过原点,与x轴的另一个交点为(2,0),将抛物线C1向右平移m(m>0)个单位得到抛物线C2 , C2交x轴于A,B两点(点A在点B的左边),交y轴于点C.

(1)求抛物线C1的解析式及顶点坐标;
(2)以AC为斜边向上作等腰直角三角形ACD,当点D落在抛物线C2的对称轴上时,求抛物线C2的解析式;
(3)若抛物线C2的对称轴存在点P,使△PAC为等边三角形,求m的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,分别是吊车在吊一物品时的示意图,已知吊车底盘CD的高度为2米,支架BC的长为4米,且与地面成30°角,吊绳AB与支架BC的夹角为75°,吊臂AC与地面成75°角.
(1)求证:AB=AC
(2)求吊车的吊臂顶端A点距地面的高度是多少米?(保留根号)

查看答案和解析>>

科目: 来源: 题型:

【题目】在学习代数式的值时,介绍了计算程序中的框图:用表示数据输入、输出框;用表示数据处理和运算框;用表示数据判断框(根据条件决定执行两条路径中的某一条).按图所示的程序计算(输入的为正整数).

例如:输入,结果依次为,即运算循环(次计算结果为)结束.

(1)输入,结果依次为___________________.

(依次填入循环计算所缺的几次结果)

(2)输入,运算循环__________次结束.

(3)输入正整数,经过次运算结束,试求的值.

查看答案和解析>>

同步练习册答案