科目: 来源: 题型:
【题目】如图,六边形ABCDEF的内角都相等,∠DAB=60°,AB=DE,则下列结论成立的个数是( )
①AB∥DE;②EF∥AD∥BC;③AF=CD;④四边形ACDF是平行四边形;⑤六边形ABCDEF既是中心对称图形,又是轴对称图形.![]()
A.2
B.3
C.4
D.5
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在△ABC中,点O是△ABC的内心,连接OB,OC,过点O作EF∥BC分别交AB,AC于点E,F.已知△ABC的周长为8,BC=x,△AEF的周长为y,则表示y与x的函数图象大致是( )![]()
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系中,点A的坐标为(﹣1,
),以原点O为中心,将点A顺时针旋转150°得到点A′,则点A′的坐标为( )![]()
A.(0,﹣2)
B.(1,﹣
)
C.(2,0)
D.(
,﹣1)
查看答案和解析>>
科目: 来源: 题型:
【题目】下列说法正确的是( )
A.调查孝感区居民对创建“全国卫生城市”的知晓度,宜采用抽样调查
B.一组数据85,95,90,95,95,90,90,80,95,90的众数为95
C.“打开电视,正在播放乒乓球比赛”是必然事件
D.同时抛掷两枚质地均匀的硬币一次,出现两个正面朝上的概率为 ![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图1,△ABC是边长为4cm的等边三角形,边AB在射线OM上,且OA=6cm,点D从O点出发,沿OM的方向以1cm/s的速度运动,当D不与点A重合时,将△ACD绕点C逆时针方向旋转60°得到△BCE,连结DE.![]()
(1)求证:△CDE是等边三角形;
(2)如图2,当6<t<10时,△BDE的周长是否存在最小值?若存在,求出△BDE的最小周长;若不存在,请说明理由;
(3)如图3,当点D在射线OM上运动时,是否存在以D、E、B为顶点的三角形是直角三角形?若存在,求出此时t的值;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知抛物线y=ax2+
x+c与x轴交于A,B两点,与y轴交于丁C,且A(2,0),C(0,﹣4),直线l:y=﹣
x﹣4与x轴交于点D,点P是抛物线y=ax2+
x+c上的一动点,过点P作PE⊥x轴,垂足为E,交直线l于点F.![]()
(1)
试求该抛物线表达式;
(2)如图(1),四边形PCOF是平行四边形,求P点的坐标;
(3)如图(2),过点P作PH⊥y轴,垂足为H,连接AC.![]()
①求证:△ACD是直角三角形;
②试问当P点横坐标为何值时,使得以点P、C、H为顶点的三角形与△ACD相似?
查看答案和解析>>
科目: 来源: 题型:
【题目】设a、b是任意两个实数,用max{a,b}表示a、b两数中较大者,例如:max{﹣1,﹣1}=﹣1,max{1,2}=2,max{4,3}=4,参照上面的材料,解答下列问题:
(1)max{5,2}= , max{0,3}=;
(2)若max{3x+1,﹣x+1}=﹣x+1,求x的取值范围;
(3)求函数y=x2﹣2x﹣4与y=﹣x+2的图象的交点坐标,函数y=x2﹣2x﹣4的图象如图所示,请你在图中作出函数y=﹣x+2的图象,并根据图象直接写出max{﹣x+2,x2﹣2x﹣4}的最小值. ![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,AB是⊙O的弦,BC切⊙O于点B,AD⊥BC,垂足为D,OA是⊙O的半径,且OA=3. ![]()
(1)求证:AB平分∠OAD;
(2)若点E是优弧
上一点,且∠AEB=60°,求扇形OAB的面积.(计算结果保留π)
查看答案和解析>>
科目: 来源: 题型:
【题目】如图所示,C城市在A城市正东方向,现计划在A、C两城市间修建一条高速公路(即线段AC),经测量,森林保护区的中心P在A城市的北偏东60°方向上,在线段AC上距A城市120km的B处测得P在北偏东30°方向上,已知森林保护区是以点P为圆心,100km为半径的圆形区域,请问计划修建的这条高速公路是否穿越保护区,为什么?(参考数据:
≈1.73)![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com