相关习题
 0  350273  350281  350287  350291  350297  350299  350303  350309  350311  350317  350323  350327  350329  350333  350339  350341  350347  350351  350353  350357  350359  350363  350365  350367  350368  350369  350371  350372  350373  350375  350377  350381  350383  350387  350389  350393  350399  350401  350407  350411  350413  350417  350423  350429  350431  350437  350441  350443  350449  350453  350459  350467  366461 

科目: 来源: 题型:

【题目】如图,一次函数y=﹣x+b与反比例函数y= (x>0)的图象交于点A(m,3)和B(3,1).
(1)填空:一次函数的解析式为 , 反比例函数的解析式为
(2)点P是线段AB上一点,过点P作PD⊥x轴于点D,连接OP,若△POD的面积为S,求S的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图所示,我国两艘海监船A,B在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C,此时,B船在A船的正南方向5海里处,A船测得渔船C在其南偏东45°方向,B船测得渔船C在其南偏东53°方向,已知A船的航速为30海里/小时,B船的航速为25海里/小时,问C船至少要等待多长时间才能得到救援?(参考数据:sin53°≈ ,cos53°≈ ,tan53°≈ ≈1.41)

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC边于点D,过点C作CF∥AB,与过点B的切线交于点F,连接BD.
(1)求证:BD=BF;
(2)若AB=10,CD=4,求BC的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表. 调查结果统计表

组别

分组(单位:元)

人数

A

0≤x<30

4

B

30≤x<60

16

C

60≤x<90

a

D

90≤x<120

b

E

x≥120

2


请根据以上图表,解答下列问题:
(1)填空:这次被调查的同学共有人,a+b= , m=
(2)求扇形统计图中扇形C的圆心角度数;
(3)该校共有学生1000人,请估计每月零花钱的数额x在60≤x<120范围的人数.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在Rt△ABC中,∠A=90°,AB=AC,BC= +1,点M,N分别是边BC,AB上的动点,沿MN所在的直线折叠∠B,使点B的对应点B′始终落在边AC上,若△MB′C为直角三角形,则BM的长为

查看答案和解析>>

科目: 来源: 题型:

【题目】如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,将半径为2,圆心角为120°的扇形OAB绕点A逆时针旋转60°,点O,B的对应点分别为O′,B′,连接BB′,则图中阴影部分的面积是(
A.
B.2
C.2
D.4

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在ABCD中,对角线AC,BD相交于点O,添加下列条件不能判定ABCD是菱形的只有(
A.AC⊥BD
B.AB=BC
C.AC=BD
D.∠1=∠2

查看答案和解析>>

科目: 来源: 题型:

【题目】如图在平面直角坐标系中,直线y=﹣ x+3与x轴、y轴分别交于A、B两点,点P、Q同时从点A出发,运动时间为t秒.其中点P沿射线AB运动,速度为每秒4个单位长度,点Q沿射线AO运动,速度为每秒5个单位长度.以点Q为圆心,PQ长为半径作⊙Q.

(1)求证:直线AB是⊙Q的切线;
(2)过点A左侧x轴上的任意一点C(m,0),作直线AB的垂线CM,垂足为M.若CM与⊙Q相切于点D,求m与t的函数关系式(不需写出自变量的取值范围);
(3)在(2)的条件下,是否存在点C,直线AB、CM、y轴与⊙Q同时相切?若存在,请直接写出此时点C的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】荆州市某水产养殖户进行小龙虾养殖.已知每千克小龙虾养殖成本为6元,在整个销售旺季的80天里,销售单价p(元/千克)与时间第t(天)之间的函数关系为: ,日销售量y(千克)与时间第t(天)之间的函数关系如图所示:

(1)求日销售量y与时间t的函数关系式?
(2)哪一天的日销售利润最大?最大利润是多少?
(3)该养殖户有多少天日销售利润不低于2400元?
(4)在实际销售的前40天中,该养殖户决定每销售1千克小龙虾,就捐赠m(m<7)元给村里的特困户.在这前40天中,每天扣除捐赠后的日销售利润随时间t的增大而增大,求m的取值范围.

查看答案和解析>>

同步练习册答案