相关习题
 0  350401  350409  350415  350419  350425  350427  350431  350437  350439  350445  350451  350455  350457  350461  350467  350469  350475  350479  350481  350485  350487  350491  350493  350495  350496  350497  350499  350500  350501  350503  350505  350509  350511  350515  350517  350521  350527  350529  350535  350539  350541  350545  350551  350557  350559  350565  350569  350571  350577  350581  350587  350595  366461 

科目: 来源: 题型:

【题目】在黄冈长江大桥的东端一处空地上,有一块矩形的标语牌ABCD(如图所示),已知标语牌的高AB=5m,在地面的点E处,测得标语牌点A的仰角为30°,在地面的点F处,测得标语牌点A的仰角为75°,且点E,F,B,C在同一直线上,求点E与点F之间的距离.(计算结果精确到0.1米,参考数据: ≈1.41, ≈1.73)

查看答案和解析>>

科目: 来源: 题型:

【题目】已知:如图,一次函数y=﹣2x+1与反比例函数y= 的图象有两个交点A(﹣1,m)和B,过点A作AE⊥x轴,垂足为点E;过点B作BD⊥y轴,垂足为点D,且点D的坐标为(0,﹣2),连接DE.
(1)求k的值;
(2)求四边形AEDB的面积.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知:如图,MN为⊙O的直径,ME是⊙O的弦,MD垂直于过点E的直线DE,垂足为点D,且ME平分∠DMN.
求证:
(1)DE是⊙O的切线;
(2)ME2=MDMN.

查看答案和解析>>

科目: 来源: 题型:

【题目】我市东坡实验中学准备开展“阳光体育活动”,决定开设足球、篮球、乒乓球、羽毛球、排球等球类活动,为了了解学生对这五项活动的喜爱情况,随机调查了m名学生(每名学生必选且只能选择这五项活动中的一种).

根据以上统计图提供的信息,请解答下列问题:
(1)m= , n=
(2)补全上图中的条形统计图.
(3)若全校共有2000名学生,请求出该校约有多少名学生喜爱打乒乓球.
(4)在抽查的m名学生中,有小薇、小燕、小红、小梅等10名学生喜欢羽毛球活动,学校打算从小薇、小燕、小红、小梅这4名女生中,选取2名参加全市中学生女子羽毛球比赛,请用列表法或画树状图法,求同时选中小红、小燕的概率.(解答过程中,可将小薇、小燕、小红、小梅分别用字母A、B、C、D代表)

查看答案和解析>>

科目: 来源: 题型:

【题目】黄麻中学为了创建全省“最美书屋”,购买了一批图书,其中科普类图书平均每本的价格比文学类图书平均每本的价格多5元,已知学校用12000元购买的科普类图书的本数与用5000元购买的文学类图书的本数相等,求学校购买的科普类图书和文学类图书平均每本的价格各是多少元?

查看答案和解析>>

科目: 来源: 题型:

【题目】已知关于x的一元二次方程x2+(2x+1)x+k2=0①有两个不相等的实数根.
(1)求k的取值范围;
(2)设方程①的两个实数根分别为x1 , x2 , 当k=1时,求x12+x22的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知:如图,在△AOB中,∠AOB=90°,AO=3cm,BO=4cm.将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,此时线段OB1与AB的交点D恰好为AB的中点,则线段B1D=cm.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在正方形ABCD的外侧,作等边△ADE,则∠BED的度数是

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知二次函数y= x2﹣4的图象与x轴交于A,B两点,与y轴交于点C,⊙C的半径为 ,P为⊙C上一动点.

(1)点B,C的坐标分别为B(),C();
(2)是否存在点P,使得△PBC为直角三角形?若存在,求出点P的坐标;若不存在,请说明理由;
(3)连接PB,若E为PB的中点,连接OE,则OE的最大值=

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,将边长为6的正三角形纸片ABC按如下顺序进行两次折叠,展平后,得折痕AD,BE(如图①),点O为其交点.

(1)探求AO到OD的数量关系,并说明理由;
(2)如图②,若P,N分别为BE,BC上的动点.
(Ⅰ)当PN+PD的长度取得最小值时,求BP的长度;
(Ⅱ)如图③,若点Q在线段BO上,BQ=1,则QN+NP+PD的最小值=

查看答案和解析>>

同步练习册答案