精英家教网 > 初中数学 > 题目详情

【题目】如图,已知二次函数y= x2﹣4的图象与x轴交于A,B两点,与y轴交于点C,⊙C的半径为 ,P为⊙C上一动点.

(1)点B,C的坐标分别为B(),C();
(2)是否存在点P,使得△PBC为直角三角形?若存在,求出点P的坐标;若不存在,请说明理由;
(3)连接PB,若E为PB的中点,连接OE,则OE的最大值=

【答案】
(1)3,0;0,﹣4
(2)

存在点P,使得△PBC为直角三角形,

①当PB与⊙相切时,△PBC为直角三角形,如图(2)a,

连接BC,

∵OB=3.OC=4,

∴BC=5,

∵CP2⊥BP2,CP2=

∴BP2=2

过P2作P2E⊥x轴于E,P2F⊥y轴于F,

则△CP2F∽△BP2E,四边形OCP2B是矩形,

= =2,

设OC=P2E=2x,CP2=OE=x,

∴BE=3﹣x,CF=2x﹣4,

= =2,

∴x= ,2x=

∴FP2= ,EP2=

∴P2 ,﹣ ),

过P1作P1G⊥x轴于G,P1H⊥y轴于H,

同理求得P1(﹣1,﹣2),

②当BC⊥PC时,△PBC为直角三角形,

过P4作P4H⊥y轴于H,

则△BOC∽△CHP4

= =

∴CH= ,P4H=

∴P4 ,﹣ ﹣4);

同理P3(﹣ ﹣4);

综上所述:点P的坐标为:(﹣1,﹣2)或( ,﹣ )或( ,﹣ ﹣4)或(﹣ ﹣4);


(3)
【解析】解:(1)在y= x2﹣4中,令y=0,则x=±3,令x=0,则y=﹣4,
∴B(3,0),C(0,﹣4);
所以答案是:3,0;0,﹣4;
如图(3),当PB与⊙C相切时,PB与y 轴的距离最大,OE的值最大,

∵过E作EM⊥y轴于M,过P作PF⊥y轴于F,
∴OB∥EM∥PF,
∵E为PB的中点,
∴ME= (OB+PF)= ,OM=MF= OF=
∴OE= =
所以答案是:
【考点精析】通过灵活运用二次函数的图象和二次函数的性质,掌握二次函数图像关键点:1、开口方向2、对称轴 3、顶点 4、与x轴交点 5、与y轴交点;增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小即可以解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,某校综合实践活动小组的同学欲测量公园内一棵树DE的高度,他们在这棵树正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30°,朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°.已知A点的高度AB为2m,台阶AC的倾斜角∠ACB为30°,且B、C、E三点在同一条直线上.请根据以上条件求出树DE的高度(测倾器的高度忽略不计).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD和正方形EFCG的边长分别为3和1,点F,G分别在边BC,CD上,P为AE的中点,连接PG,则PG的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,设反比例函数的解析式为y= (k>0).
(1)若该反比例函数与正比例函数y=2x的图象有一个交点的纵坐标为2,求k的值;
(2)若该反比例函数与过点M(﹣2,0)的直线l:y=kx+b的图象交于A,B两点,如图所示,当△ABO的面积为 时,求直线l的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校园文学社为了解本校学生对本社一种报纸四个版面的喜欢情况,随机抽查部分学生做了一次问卷调查,要求学生选出自己最喜欢的一个版面,将调查数据进行了整理、绘制成部分统计图如下:

请根据图中信息,解答下列问题:
(1)该调查的样本容量为 , a=%,“第一版”对应扇形的圆心角为°;
(2)请你补全条形统计图;
(3)若该校有1000名学生,请你估计全校学生中最喜欢“第三版”的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我市东坡实验中学准备开展“阳光体育活动”,决定开设足球、篮球、乒乓球、羽毛球、排球等球类活动,为了了解学生对这五项活动的喜爱情况,随机调查了m名学生(每名学生必选且只能选择这五项活动中的一种).

根据以上统计图提供的信息,请解答下列问题:
(1)m= , n=
(2)补全上图中的条形统计图.
(3)若全校共有2000名学生,请求出该校约有多少名学生喜爱打乒乓球.
(4)在抽查的m名学生中,有小薇、小燕、小红、小梅等10名学生喜欢羽毛球活动,学校打算从小薇、小燕、小红、小梅这4名女生中,选取2名参加全市中学生女子羽毛球比赛,请用列表法或画树状图法,求同时选中小红、小燕的概率.(解答过程中,可将小薇、小燕、小红、小梅分别用字母A、B、C、D代表)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AC=BC,点D、E分别是边AB、AC的中点,延长DE到F,使得EF=DE,那么四边形ADCF是(
A.等腰梯形
B.直角梯形
C.矩形
D.菱形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1所示,E为矩形ABCD的边AD上一点,动点P、Q同时从点B出发,点P以1cm/秒的速度沿折线BE﹣ED﹣DC运动到点C时停止,点Q以2cm/秒的速度沿BC运动到点C时停止.设P、Q同时出发t秒时,△BPQ的面积为ycm2 . 已知y与t的函数关系图象如图2;(其中曲线OG为抛物线的一部分,其余各部分均为线段),则下列结论:
①当0<t≤5时,y= t2;②当t=6秒时,△ABE≌△PQB;③cos∠CBE= ;④当t= 秒时,△ABE∽△QBP;
其中正确的是( )

A.①②
B.①③④
C.③④
D.①②④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线.
(1)求证:△ADE≌△CBF;
(2)若∠ADB是直角,则四边形BEDF是什么四边形?证明你的结论.

查看答案和解析>>

同步练习册答案